4£®ºù«µºÊÐij¹¤³§µ³Î¯ÎªÁËÑо¿ÊÖ»ú¶ÔÄêÇáÖ°¹¤¹¤×÷ºÍÉú»îµÄÓ°ÏìÇé¿ö×öÁËÒ»Ïîµ÷²é£ºÔÚ³§ÄÚÓüòµ¥Ëæ»ú³éÑù·½·¨³éÈ¡ÁË30Ãû25ËêÖÁ35ËêµÄÖ°¹¤£¬¶ÔÆä¡°Ã¿Ê®ÌìÀۼƿ´ÊÖ»úʱ¼ä¡±£¨µ¥Î»£ºÐ¡Ê±£©½øÐе÷²é£®µÃµ½¾¥Ò¶Í¼Èçͼ£¬Ëù³éÈ¡µÄÄÐÖ°¹¤¡°Ã¿Ê®ÌìÀۼƿ´ÊÖ»úʱ¼ä¡±µÄƽ¾ùÖµºÍËù³éÈ¡µÄÅ®Éú¡°Ã¿Ê®ÌìÀۼƿ´ÊÖ»úʱ¼ä¡±µÄÖÐλÊý·Ö±ðÊÇ£¨¡¡¡¡£©
A£®$\frac{319}{15}$£¬25B£®$\frac{347}{15}$£¬25C£®$\frac{347}{15}$£¬20D£®$\frac{319}{15}$£¬20

·ÖÎö Óɾ¥Ò¶Í¼µÃÄÜÇó³öËù³éÈ¡µÄÄÐÖ°¹¤¡°Ã¿Ê®ÌìÀۼƿ´ÊÖ»úʱ¼ä¡±µÄƽ¾ùÖµºÍËù³éÈ¡µÄÅ®Éú¡°Ã¿Ê®ÌìÀۼƿ´ÊÖ»úʱ¼ä¡±µÄÖÐλÊý£®

½â´ð ½â£ºÓɾ¥Ò¶Í¼µÃ£º
Ëù³éÈ¡µÄÄÐÖ°¹¤¡°Ã¿Ê®ÌìÀۼƿ´ÊÖ»úʱ¼ä¡±µÄƽ¾ùֵΪ£º
$\overline{x}$=$\frac{1}{15}$£¨8+9+11+12+12+15+17+20+23+23+26+29+35+38+41£©=$\frac{319}{15}$£¬
Ëù³éÈ¡µÄÅ®Éú¡°Ã¿Ê®ÌìÀۼƿ´ÊÖ»úʱ¼ä¡±µÄÖÐλÊýΪ£º25£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éƽ¾ùÖµºÍÖÐλÊýµÄÇ󷨣¬¿¼²é¾¥Ò¶Í¼¡¢Æ½¾ùÖµ¡¢ÖÐλÊýµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª4¼þ²úÆ·ÖнöÓÐ1¼þ´ÎÆ·£¬ÏÖÖðÒ»¼ì²â£¬Ö±ÖÁÈ·¶¨³ö´ÎƷΪֹ£¬¼Ç¼ì²âµÄ´ÎÊýΪ¦Î£¬ÔòE£¨¦Î£©=$\frac{9}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÎÒÃǰÑÔ²ÐÄÔÚÒ»ÌõÖ±ÏßÉÏ£¬ÇÒÏàÁÚÁ½Ô²±Ë´ËÍâÇеÄÒ»×éÔ²½Ð×ö¡°´®Ô²¡±£¬ÔÚÈçͼËùʾµÄ¡°´®Ô²¡±ÖУ¬Ô²C1ºÍÔ²C3µÄ·½³Ì·Ö±ðΪ£ºx2+y2=1ºÍ£¨x-4£©2+£¨y-2£©2=1£¬ÈôÖ±Ïßax+2by-2=0£¨a£¬b£¾0£©Ê¼ÖÕÆ½·ÖÔ²C2µÄÖܳ¤£¬Ôò$\frac{1}{a}$+$\frac{2}{b}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®5C£®4$\sqrt{2}$D£®3+2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔڵȲîÊýÁÐ2£¬5£¬8£¬¡­ÖУ¬µÚ4ÏîÊÇ£¨¡¡¡¡£©
A£®11B£®13C£®14D£®17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¹Û²ìÏÂÁи÷ʽ£ºa+b=1£¬a2+b2=3£¬a3+b3=4£¬a4+b4=7£¬a5+b5=11£¬¡­£¬Ôòa11+b11=£¨¡¡¡¡£©
A£®76B£®123C£®199D£®322

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=[cos£¨$\frac{¦Ð}{2}$-x£©-$\sqrt{3}$cosx]cosx£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍ×î´óÖµ£»
£¨2£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ä³²úÆ·×ÔͶ·ÅÊг¡ÒÔÀ´£¬¾­Èý´Î½µ¼Û£¬µ¥¼ÛÓÉ172Ôª½µµ½58Ôª£¬ÄÇôÕâÖÖ²úƷƽ¾ùÿ´Î½µ¼ÛµÄ°Ù·ÖÂÊÊÇ30%£®£¨¾«È·µ½1%£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁгÌÐò¿òͼ±íʾµÄËã·¨ÔËÐкó£¬Êä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®25B£®50C£®125D£®250

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¡°Ò»´øÒ»Â·¡±¹ú¼ÊºÏ×÷¸ß·åÂÛ̳ԲÂúÂäÄ»ÁË£¬Ïà¹Ø»°ÌâÔÚÍøÂçÉÏÒýÆðÁËÍøÓÑÃǵĸ߶ȹØ×¢£¬Îª´Ë£¬21²Æ¾­APPÁªºÏUCÍÆ³ö¡°Ò»´øÒ»Â·¡±´óÊý¾Ý΢±¨¸æ£¬ÔÚÈ«¹ú³éÈ¡µÄ70ǧÍòÍøÃñÖУ¨ÆäÖÐ30%Ϊ¸ßѧÀú£©ÓÐ20ǧÍòÈ˶Դ˹Ø×¢£¨ÆäÖÐ70%Ϊ¸ßѧÀú£©£®
£¨I £©¸ù¾ÝÒÔÉÏͳ¼ÆÊý¾ÝÌîÏÂÃæ2¡Á2ÁÐÁª±í£»
£¨II£©¸ù¾ÝÁÐÁª±í£¬ÓöÀÁ¢ÐÔ¼ìÑéµÄ·½·¨·ÖÎö£ºÄÜ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Ò»´øÒ»Â·¡±µÄ¹Ø×¢¶ÈÓëѧÀúÓйØÏµ£¿
¸ßѧÀú£¨Ç§ÍòÈË£©²»ÊǸßѧÀú£¨Ç§ÍòÈË£©ºÏ¼Æ
¹Ø×¢
²»¹Ø×¢
ºÏ¼Æ
²Î¿¼¹«Ê½£ºK2ͳ¼ÆÁ¿µÄ±í´ïʽÊÇK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d
P £¨K2¡Ýk0£©0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸