分析 首先利用诱导公式以及倍角公式化简解析式,然后根据正弦函数的性质分别解答.
解答 解:(1)f(x)=[cos($\frac{π}{2}$-x)-$\sqrt{3}$cosx]cosx=cosxsinx-$\frac{\sqrt{3}}{2}$(1+cos2x)
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$.
所以f(x)的最小正周期为π,最大值为1-$\frac{\sqrt{3}}{2}$;
(2)由正弦函数的单调性可知,
由$-\frac{π}{2}+2kπ≤2x-\frac{π}{3}≤\frac{π}{2}+2kπ$可得$-\frac{π}{12}+kπ≤x≤\frac{5π}{12}+kπ$,
所以函数的单调增区间为[$-\frac{π}{12}+kπ,\frac{5π}{12}+kπ$];
由$\frac{π}{2}+2kπ≤2x-\frac{π}{3}≤\frac{3π}{2}+2kπ$得到$\frac{5π}{12}+kπ≤x≤\frac{11π}{12}+kπ$,
所以函数的单调减区间为[$\frac{5π}{12}+kπ,\frac{11π}{12}+kπ$].
所以函数在[$-\frac{π}{12}+kπ,\frac{5π}{12}+kπ$]单调递增;在[$\frac{5π}{12}+kπ,\frac{11π}{12}+kπ$](k∈Z)单调递减.
点评 本题考查了三角函数式的化简以及利用正弦函数的性质求三角函数的周期、最值以及单调区间;属于常规题型.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 分组 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) |
| 频数 | 2 | 3 | 4 | 5 | 4 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{319}{15}$,25 | B. | $\frac{347}{15}$,25 | C. | $\frac{347}{15}$,20 | D. | $\frac{319}{15}$,20 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com