精英家教网 > 高中数学 > 题目详情
19.观察下列不等式:
1<$\frac{4}{3}$;
1+$\frac{1}{{2}^{2}}$<$\frac{8}{5}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{12}{7}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{16}{9}$;

(1)由上述不等式,归纳出与正整数n有关的一个一般性结论:
(2)用数学归纳法证明你得到的结论.

分析 (1)由上述不等式,归纳出表达式的左侧的关系与右侧分子与分母的特征写出一个正整数n(n≥2)有关的一般性结论;
(2)利用数学归纳法证明步骤,直接证明即可.

解答 解:(1)观察下列不等式:
1<$\frac{4}{3}$;
1+$\frac{1}{{2}^{2}}$<$\frac{8}{5}$=$\frac{4×2}{2×2+1}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{12}{7}$=$\frac{4×3}{2×3+1}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{16}{9}$=$\frac{4×4}{2×4+1}$;

由上述不等式可得1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{4n}{2n+1}$,
(2)以下用数学归纳法证明这个不等式.
①当n=1时,由题设可知,不等式显然成立.
②假设当n=k时,不等式成立,即1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{k}^{2}}$<$\frac{4k}{2k+1}$,
那么,当n=k+1时,有1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{k}^{2}}$+$\frac{1}{(k+1)^{2}}$<$\frac{4k}{2k+1}$+$\frac{1}{(k+1)^{2}}$
=$\frac{4k}{2k+1}$+$\frac{4}{(2k+2)(2k+2)}$<$\frac{4k}{2k+1}$+$\frac{4}{(2k+1)(2k+3)}$
=$\frac{4k(2k+3)+4}{(2k+1)(2k+3)}$=$\frac{4(2{k}^{2}+3k+1)}{(2k+1)(2k+3)}$=$\frac{4(2k+1)(k+1)}{(2k+1)(2k+3)}$=$\frac{4(k+1)}{2k+3}$.
所以当n=k+1时,不等式也成立.
根据①和②,可知不等式对任何n∈N+都成立.

点评 本题考查归纳推理以及数学归纳法的证明方法的应用,考查逻辑推理能力以及计算能力,放缩法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=lnx-ax-b
(Ⅰ)讨论函数f(x)的单调性
(Ⅱ)当a>0时,若存在x∈(0,+∞),使得f(x)≥0成立,求证:ab$≤\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)在[0,1]上有意义,f(0)=f(1),对于任意x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求证:|f(x1)-f(x2)|<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列表述正确的是(  )
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;
③类比推理是由特殊到一般的推理;④演绎推理是由一般到特殊的推理;
⑤类比推理是由特殊到特殊的推理.
A.①④⑤B.②③④C.②③⑤D.①⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知4件产品中仅有1件次品,现逐一检测,直至确定出次品为止,记检测的次数为ξ,则E(ξ)=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线C:y2=2px(p>0)与椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)有相同焦点F,两条曲线在第一象限内的交点为A,若直线OA的斜率为2,则椭圆的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{6}-\sqrt{2}}{2}$C.$\sqrt{2}$-1D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.求值tan($-\frac{17π}{4}$)为(  )
A.1B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.观察下列等式:
$\sqrt{{1}^{3}}$=1,$\sqrt{{1}^{3}+{2}^{3}}$=3,$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}}$=6,$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+{4}^{3}}$=10
$\sqrt{{1}^{3}+{2}^{3}+{3}^{3}+{4}^{3}+{5}^{3}}$=15

(Ⅰ)猜想第n(n∈N+)个等式;
(Ⅱ)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=[cos($\frac{π}{2}$-x)-$\sqrt{3}$cosx]cosx.
(1)求f(x)的最小正周期和最大值;
(2)讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案