精英家教网 > 高中数学 > 题目详情
10.设函数f(x)在[0,1]上有意义,f(0)=f(1),对于任意x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求证:|f(x1)-f(x2)|<$\frac{1}{2}$.

分析 利用f(0)=f(1),进行适当放缩外,注意添项减项的技巧应用,即可证得结论.

解答 证明:当|x1-x2|<$\frac{1}{2}$时,由已知得|f(x1)-f(x2)|<|x1-x2|<$\frac{1}{2}$
当|x1-x2|≥$\frac{1}{2}$时,x1,x2∈[0,1],
不妨设0≤x1<x2≤1,其中x2-x1≥$\frac{1}{2}$,
∵f(0)=f(1),
∴|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|
≤|f(x1)-f(0)|+|f(1)-f(x2)|<|x1-0|+|1-x2|=x1-x2+1<-$\frac{1}{2}$+1=$\frac{1}{2}$.
∴对任意的x1,x2∈[0,1],都有:|f(x1)-f(x2)|<$\frac{1}{2}$成立

点评 本题考查函数与不等式的综合应用,解答时要先充分理解已知条件,对式子的处理要灵活,各个式子的内在联系要充分挖掘出来,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若坐标原点到抛物线x=m2y2的准线的距离为2,则m=±$\frac{\sqrt{2}}{4}$;焦点坐标为(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C:x2+(y-$\frac{\sqrt{3}}{2}$)2=$\frac{27}{4}$经过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点F1、F2,点N为圆C与椭圆E的一个交点,且直线F1N过圆心C.
(1)求椭圆E的方程;
(2)直线l与椭圆E交于A、B两点,点M的坐标为(3,0),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=-3,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点(2,0)关于直线y=-x-4的对称点是(  )
A.(-4,-6)B.(-6,-4)C.(-5,-7)D.(-7,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}中,a1=1,且an+1=2an+3×5n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,AC=4$\sqrt{3},∠ABC={60°}$,D为BC边上一点,BD=AB,设B,C到直线AD的距离分别为d1和d2,则d1+d2的最大值为(  )
A.2B.4C.$4\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=2lnx+8x,则$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1)}{△x}$的值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.观察下列不等式:
1<$\frac{4}{3}$;
1+$\frac{1}{{2}^{2}}$<$\frac{8}{5}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{12}{7}$;
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{16}{9}$;

(1)由上述不等式,归纳出与正整数n有关的一个一般性结论:
(2)用数学归纳法证明你得到的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.容量为20的样本数据,分组后的频数如表:
 分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
 频数 2 3 4 5 4 2
则样本数据落在区间[10,50)的频率为0.7.

查看答案和解析>>

同步练习册答案