精英家教网 > 高中数学 > 题目详情
已知椭圆M:
x2
a2
+
y2
3
=1(a>0)的一个焦点为F(-1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线l的斜率为
1
2
,求椭圆上到l的距离为
3
5
5
的点的个数;
(Ⅲ)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)由焦点F坐标可求c值,根据a,b,c的平方关系可求得a值;
(Ⅱ)写出直线方程,可得切线方程,再利用两条直线间的距离公式,即可得出结论;
(Ⅲ)当直线l不存在斜率时可得,|S1-S2|=0;当直线l斜率存在(显然k≠0)时,设直线方程为y=k(x+1)(k≠0),与椭圆方程联立消y可得x的方程,根据韦达定理可用k表示x1+x2,x1x2,|S1-S2|可转化为关于x1,x2的式子,进而变为关于k的表达式,再用基本不等式即可求得其最大值
解答: 解:(Ⅰ)因为椭圆的焦点为F(-1,0),所以c=1,
又b2=3所以a2=4,
所以椭圆方程为
x2
4
+
y2
3
=1
…(2分)
(Ⅱ)直线l的斜率为
1
2
,方程为x-2y+1=0,设切线y=
1
2
x+b,
与椭圆方程联立,得4x2+4bx+4b2-12=0,
由△=0得b=±2,
∴切线方程为x-2y±4=0,
x-2y+4=0与l的距离为
|4-1|
5
=
3
5
5
,x-2y-4=0与l的距离为
|-4-1|
5
=
5
3
5
5

∴椭圆上到l的距离为
3
5
5
的点的个数为3个;
(Ⅲ)当直线l无斜率时,直线为x=-1,此时C(-1,-
3
2
)
D(-1,
3
2
)

△ABD与△ABC面积相等,|S1-S2|=0                           …(7分)
当直线l斜率存在时,显然k≠0,
设直线为y=k(x+1)(k≠0)联立椭圆方程得(3+4k2)x2+8k2x+4k2-12=0
显然△>0,且x1+x2=-
8k2
3+4k2
x1x2=
4k2-12
3+4k2
…(8分)
此时|S1-S2|=
1
2
•|AB|•||y1|-|y2||=2|y1+y2|=2|k(x1+1)+k(x2+1)|
=2|k(x1+x2)+2k|=
12|k|
3+4k2
…(10分)
因为k≠0,上式=
12
3
|k|
+4|k|
12
2
3
|k|
•4|k|
=
3
当k=±
3
2
时等号成立
综上的,|S1-S2|的最大值为
3
         …(12分)
点评:本题考查直线与圆锥曲线的位置关系及椭圆的标准方程的求解,考查学生综合运用知识分析问题解决问题的能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一所中学有高一、高二、高三共三个年级的学生900名,其中高一学生400名,高二学生300名,高三学生200名.如果通过分层抽样的方法从全体高中学生中抽取一个容量为45人的样本,那么应当从三年级的学生中抽取的人数是(  )
A、30 10 5
B、25 15 15
C、20 15 10
D、15 15 15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线M:y2=2px( p>0 )上一个横坐标为-3的点到其焦点的距离为4,过点P(2,0)且与x轴垂直的直线l1与抛物线M相交于A、B两点,过点P且与x轴不垂直的直线l2与抛物线M相交于C、D两点,直线BC与DA相交于点E.
(Ⅰ)求抛物线M的方程;
(Ⅱ)请判断点E的横坐标是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知两点F1(-2,0),F2(2,0),动点P满足条件||PF1|-|PF2||=2
3

(Ⅰ)求动点P的轨迹方程E.
(Ⅱ)是否存在过点G(2,2)的直线l与曲线E交于不同的两点N,N,使G平分线段MN,试证明你的结论.
(Ⅲ)若直线l:y=kx+
2
与双曲线C恒有两个不同的交点A和B,且
OA
OB
>2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:x
3
4
=2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简f(α)=
sin(
π
2
-α)+sin(-π-α)
3cos(2π+α)+cos(
2
-α)

(2)若tanα=2,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=ax(a∈R)
(1)若函数y=f(x)和y=g(x)的图象无公共点,试求实数a的取值范围;
(2)若存在两个实数x1,x2且x1≠x2,满足f(x1)=g(x1),f(x2)=g(x2),求证x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点是椭圆C:
x2
4
+
y2
3
=1的中心O,焦点与该椭圆的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)设椭圆C的右准线交x轴于点Q,过点Q的直线l交抛物线于D、E两点.求△ODE面积的最小值;
(Ⅲ)设A、B分别为椭圆C的左、右顶点,P为右准线上不同于点Q的任意一点,若直线AP、BP分别与椭圆相交于异于A、B的点M、N.求证:点B在以MN为直径的圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(x0,y0)在椭圆
x2
a2
+
y2
b2
=1内,求被点P所平分的中点弦的方程.

查看答案和解析>>

同步练习册答案