精英家教网 > 高中数学 > 题目详情
13.设P(x,2)是角α终边上一点,且满足sinα=$\frac{2}{3}$,则实数x=±5.

分析 由条件利用任意角的三角函数的定义,求得x的值.

解答 解:由题意可得$\frac{2}{\sqrt{{x}^{2}+4}}$=$\frac{2}{3}$,求得x=±5,
故答案为:±5.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知对任意的m∈[$\frac{1}{2}$,3),不等式x2+mx+4>2m+4x恒成立,则x的取值范围是(  )
A.(-∞,-1]∪(2,+∞)B.(-∞,-3)C.(-∞,-1]∪[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(x+m)+n的图象在点(1,f(1))处的切线方程是y=x-1,函数g(x)=ax2+bx(a、b∈R,a≠0)在x=2处取得极值-2.
(1)求函数f(x)、g(x)的解析式;
(2)若函数y=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数)在区间(t,t+$\frac{1}{2}$)没有单调性,求实数t的取值范围;
(3)设k∈Z,当x>1时,不等式k(x-1)<xf(x)+3g′(x)+4恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{2}$cos(2x+$\frac{5π}{6}$),则y=f(x)的图象可由函数g(x)=$\frac{1}{2}$sin(x+$\frac{π}{2}$)的图象(纵坐标不变)(  )
A.先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{5π}{12}$个单位
B.先把各点的横坐标伸长到原来的2倍,再向右平移$\frac{5π}{6}$个单位
C.先把各点的横坐标缩短到原来的$\frac{1}{2}$倍,再向左平移$\frac{5π}{12}$个单位
D.先把各点的横坐标伸长到原来的2倍,再向左平移$\frac{5π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用辗转相除法求210与162的最大公约数,并用更相减损术检验.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列说法中,
(1)等差数列{an}的通项公式an是关于n的一次函数
(2)在△ABC中,sinA>sinB?a>b
(3)已知数列{an}的前n项和Sn是关于n的二次函数,则数列{an}一定是等差数列
(4)在△ABC中,$\overrightarrow{AB}•\overrightarrow{BC}$<0,则△ABC是钝角三角形
(5)在△ABC中,A=60°,a=$\sqrt{6}$,b=4,那么满足条件的△ABC有两解.
正确的序号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在下列各图中,图中两个变量具有相关关系的图是(  )
A.(1)(2)B.(1)(4)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数(1+ai)2(i为虚数单位,a∈R)是纯虚数,则复数的模是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π),在一个周期内的图象如图,求:
(1)函数振幅、周期和初相并写出f(x)的解析式;
(2)求f(x)的单调递增区间;
(3)求直线y=$\sqrt{2}$与函数y=f(x)的图象的交点坐标.

查看答案和解析>>

同步练习册答案