精英家教网 > 高中数学 > 题目详情
17.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{an}称为“斐波那契数列”,则(a1a3-a22)+(a2a4-a32)+(a3a5-a42)+…+(a2015a2017-a20162)=1.

分析 先计算前3项的和即可发现规律,使用归纳法得出结论.

解答 解:a1a3-a22=1×2-1=1,
a2a4-a32=1×3-22=-1,
a3a5-a42=2×5-32=1,

a2015a2017-a20162=1
∴(a1a3-a22)+(a2a4-a32)+(a3a5-a42)+…+(a2015a2017-a20162
=1+(-1)+1+(-1)+…+1=1.
故答案为1.

点评 本题考查了归纳推理,寻找每项的变化规律是关键点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在Rt△ABC中,A=$\frac{π}{2}$,AB=2,AC=2$\sqrt{3}$,线段EF在斜边BC上运动,且EF=1,设∠EAF=θ,则tanθ的取值范围是[$\frac{\sqrt{3}}{9}$,$\frac{4\sqrt{3}}{11}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-$\frac{1}{x}$,g(x)=ax+b.
(1)若a=2,F(x)=f(x)-g(x),求F(x)的单调区间;
(2)若函数g(x)=ax+b是函数f(x)=lnx-$\frac{1}{x}$图象的切线,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,以坐标原点为极轴,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直线l的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数,0≤α<π).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于两点A,B,且线段AB的中点为M(2,2),求α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲乙和其他4名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这6名同学的站队方法有(  )
A.144种B.180种C.288种D.360种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的不等式|x+3|+|x+m|≥2m的解集为R.
(1)求m的最大值;
(2)已知a>0,b>0,c>0,且a+b+c=1,求2a2+3b2+4c2的最小值及此时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn为等差数列{an}的前n项和,若$\frac{{S}_{1}}{{S}_{4}}$=$\frac{1}{10}$,则$\frac{{S}_{3}}{{S}_{5}}$=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=3sin(2x-$\frac{π}{3}$)的图象可以由y=3sin2x的图象(  )
A.向右平移$\frac{π}{3}$个单位长度得到B.向左平移$\frac{π}{3}$个单位长度得到
C.向右平移$\frac{π}{6}$个单位长度得到D.向左平移$\frac{π}{6}$个单位长度得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的导函数f′(x)的图象如图所示,那么下面说法正确的是(  )
A.y=f(x)在(-∞,-0.7)上单调递增B.y=f(x)在(-2,2)上单调递增
C.在x=1时,函数y=f(x)取得极值D.y=f(x)在x=0处切线的斜率小于零.

查看答案和解析>>

同步练习册答案