分析 (1)求出F(x)的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)设切点(m,lnm-$\frac{1}{m}$),求出f(x)的导数,由题意可得a=$\frac{1}{m}$+$\frac{1}{{m}^{2}}$,lnm-$\frac{1}{m}$=ma+b,即可得到a+b=lnm-$\frac{1}{m}$+$\frac{1}{{m}^{2}}$-1,令$\frac{1}{m}$=t>0换元,可得a+b=φ(t)=-lnt+t2-t-1,利用导数求其最小值即可得到a+b的最小值.
解答 解:(1)a=2时,F(x)=f(x)-g(x)=lnx-$\frac{1}{x}$-2x-b,
F′(x)=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$-2,(x>0),
F′(x)=$\frac{(1-x)(1+2x)}{x}$,
令F′(x)>0,解得:0<x<1,
令F′(x)<0,解得:x>1,
故F(x)在(0,1)递增,在(1,+∞)递减;
(2):设切点(m,lnm-$\frac{1}{m}$),函数f(x)=lnx-$\frac{1}{x}$的导数为f′(x)=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$,
即有切线的斜率为$\frac{1}{m}$+$\frac{1}{{m}^{2}}$,
若直线g(x)=ax+b是函数f(x)=lnx-$\frac{1}{x}$图象的切线,
则a=$\frac{1}{m}$+$\frac{1}{{m}^{2}}$,lnm-$\frac{1}{m}$=ma+b,
即有b=lnm-$\frac{2}{m}$-1,
a+b=lnm-$\frac{1}{m}$+$\frac{1}{{m}^{2}}$-1,
令$\frac{1}{m}$=t>0,则a+b=-lnt-t+t2-1,
令a+b=φ(t)=-lnt+t2-t-1,
则φ′(t)=-$\frac{1}{t}$+2t-1=$\frac{(2t+1)(t-1)}{t}$,
当t∈(0,1)时,φ'(t)<0,φ(t)在(0,1)上单调递减;
当t∈(1,+∞)时,φ'(t)>0,φ(t)在(1,+∞)上单调递增.
即有t=1时,φ(t)取得极小值,也为最小值.
则a+b=φ(t)≥φ(1)=-1,
故a+b的最小值为-1.
点评 本题考查导数的运用:求切线的方程和求极值、最值,主要考查构造函数,通过导数判断单调区间求得极值也为最值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{3}π}{8}$ | B. | $\frac{3\sqrt{3}π}{7}$ | C. | $\frac{3\sqrt{2}π}{8}$ | D. | $\frac{3\sqrt{2}π}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.95 | B. | 0.05 | C. | 0.47 | D. | 0.48 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,3] | B. | [2,3] | C. | (-∞,0)∪(0,2] | D. | (-∞,-1)∪(0,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com