精英家教网 > 高中数学 > 题目详情
20.已知△ABC中,角A,B,C所对的边分别为a,b,c,且asinC=$\sqrt{3}$ccosA.
(1)求角A;
(2)若b=2,△ABC的面积为$\sqrt{3}$,求a.

分析 (1)根据正弦定理、商的关系化简已知的式子,由内角的范围和特殊角的三角函数值求出A;
(2)由条件和三角形的面积公式列出方程,求出c的值,由余弦定理列出方程化简后求出a的值.

解答 解:(1)由题意知,asinC=$\sqrt{3}$ccosA,
由正弦定理得,sinAsinC=$\sqrt{3}$sinCcosA,
∵sinC>0,∴sinA=$\sqrt{3}$cosA,则tanA=$\sqrt{3}$,
由0<A<π得A=$\frac{π}{3}$;
(2)∵b=2,A=$\frac{π}{3}$,△ABC的面积为$\sqrt{3}$,
∴$\frac{1}{2}bcsinA=\sqrt{3}$,则$\frac{1}{2}×2×c×\frac{\sqrt{3}}{2}=\sqrt{3}$,解得c=2,
由余弦定理得,a2=b2+c2-2bccosA
=4+4-2×$2×2×\frac{1}{2}$=4,
则a=2.

点评 本题考查正弦定理、余弦定理,三角形的面积公式,以及商的关系的应用,注意内角的范围,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=axex-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128…).
(1)若f(x)仅有一个极值点,求a的取值范围;
(2)证明:当$0<a<\frac{1}{2}$时,f(x)有两个零点x1,x2,且-3<x1+x2<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$f(x)=\frac{kx+b}{e^x}$.
(1)若f(x)在x=0处的切线方程为y=x+1,求k与b的值;
(2)求$\int_0^1{\frac{x-1}{e^x}}{d_x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-$\frac{1}{x}$,g(x)=ax+b.
(1)若a=2,F(x)=f(x)-g(x),求F(x)的单调区间;
(2)若函数g(x)=ax+b是函数f(x)=lnx-$\frac{1}{x}$图象的切线,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线x2+(y-1)2=1(x≤0)上的点到直线x-y-1=0的距离最大值为a,最小值为b,则a-b的值是(  )
A.$\sqrt{2}$B.2C.$\frac{\sqrt{2}}{2}$+1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,以坐标原点为极轴,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直线l的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数,0≤α<π).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于两点A,B,且线段AB的中点为M(2,2),求α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲乙和其他4名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这6名同学的站队方法有(  )
A.144种B.180种C.288种D.360种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn为等差数列{an}的前n项和,若$\frac{{S}_{1}}{{S}_{4}}$=$\frac{1}{10}$,则$\frac{{S}_{3}}{{S}_{5}}$=(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数510151055
赞成人数469634
(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[55,65),的被调查者中各随机选取2人进行追踪调查,记选中的2人中赞成“车辆限行”的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案