精英家教网 > 高中数学 > 题目详情
16.用半径为R的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为(  )
A.$\frac{3\sqrt{3}π}{8}$B.$\frac{3\sqrt{3}π}{7}$C.$\frac{3\sqrt{2}π}{8}$D.$\frac{3\sqrt{2}π}{7}$

分析 设圆柱的高为x,则其为内接矩形的一边长,那么另一边长为y=2$\sqrt{{R}^{2}-(\frac{x}{2})^{2}}$,利用导数性质求出当x=$\frac{2\sqrt{3}R}{3}$时,此圆柱体积最大.由此能求出圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比.

解答 解:设圆柱的高为x,则其为内接矩形的一边长,那么另一边长为y=2$\sqrt{{R}^{2}-(\frac{x}{2})^{2}}$,
∴圆柱的体积V(X)=πy2x=$π×4[{R}^{2}-(\frac{x}{2})^{2}]x$=π(-x3+4R2x),(0<x<2R),
∴V′(x)=π(-3x2+4R2),
列表如下:

x(0,$\frac{2\sqrt{3}R}{3}$)$\frac{2\sqrt{3}R}{3}$($\frac{2\sqrt{3}R}{3}$,2R)
V′(x)+0-
∴当x=$\frac{2\sqrt{3}R}{3}$时,此圆柱体积最大.
∴圆柱体体积最大时,该圆内接矩形的两条边长分别为$\frac{2\sqrt{3}R}{3}$和2$\sqrt{{R}^{2}-(\frac{\sqrt{3}R}{3})^{2}}$=$\frac{2\sqrt{6}R}{3}$,
∴圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为:
$\frac{π{R}^{2}}{\frac{2\sqrt{3}R}{3}•\frac{2\sqrt{6}R}{3}}$=$\frac{3\sqrt{2}π}{8}$.
故选:C.

点评 本题考查圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比的求法,是中档题,解题时要认真审题,注意导数性质的合理应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,在边长为1的正方形中随机撒1000粒豆子,有380粒落在阴影部分,据此估计阴影部分的面积为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{19}{50}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在Rt△ABC中,A=$\frac{π}{2}$,AB=2,AC=2$\sqrt{3}$,线段EF在斜边BC上运动,且EF=1,设∠EAF=θ,则tanθ的取值范围是[$\frac{\sqrt{3}}{9}$,$\frac{4\sqrt{3}}{11}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和Sn,数列{Sn}的前n项和为Tn,满足Tn=3Sn-2n,n∈N*
(1)求数列{an}的通项公式;
(2)求证:Sn≥1,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$f(x)=\frac{kx+b}{e^x}$.
(1)若f(x)在x=0处的切线方程为y=x+1,求k与b的值;
(2)求$\int_0^1{\frac{x-1}{e^x}}{d_x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则点A到抛物线的准线的距离为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-$\frac{1}{x}$,g(x)=ax+b.
(1)若a=2,F(x)=f(x)-g(x),求F(x)的单调区间;
(2)若函数g(x)=ax+b是函数f(x)=lnx-$\frac{1}{x}$图象的切线,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,以坐标原点为极轴,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直线l的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数,0≤α<π).
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于两点A,B,且线段AB的中点为M(2,2),求α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=3sin(2x-$\frac{π}{3}$)的图象可以由y=3sin2x的图象(  )
A.向右平移$\frac{π}{3}$个单位长度得到B.向左平移$\frac{π}{3}$个单位长度得到
C.向右平移$\frac{π}{6}$个单位长度得到D.向左平移$\frac{π}{6}$个单位长度得到

查看答案和解析>>

同步练习册答案