| A. | p∧(¬q) | B. | (¬p)∧q | C. | (¬p)∧(¬q) | D. | p∧q |
分析 先判断命题p和命题q的真假,进而根据复合命题真假判断的真值表,可得答案.
解答 解:对于命题p,
椭圆x2+4y2=1与直线l平行的切线方程是:直线x+2y-$\sqrt{2}$=0,
而直线x+2y-$\sqrt{2}$=0,与直线x+2y-6$\sqrt{2}$=0的距离d=$\sqrt{10}$>1,
所以命题p为假命题,于是¬p为真命题;
对于命题q,
椭圆2x2+27y2=54与双曲线9x2-16y2=144有相同的焦点(±5,0),
故q为真命题,
从而(¬p)∧q为真命题.
p∧(¬q),(¬p)∧(¬q),p∧q为假命题,
故选:B
点评 本题以命题的真假判断与应用为载体,直线与直线的距离,复合命题,椭圆和双曲线的简单性质等知识点,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男生 | 女生 | 总计 | |
| 拥有平板电脑 | |||
| 没有平板电脑 | |||
| 总结 |
| P(x2≥k0) | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(2x+$\frac{3π}{2}$) | B. | y=cos(2x-$\frac{π}{2}$) | C. | y=cos(2x$+\frac{π}{2}$) | D. | y=sin($\frac{π}{2}$-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 960种 | B. | 984种 | C. | 1080种 | D. | 1440种 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com