精英家教网 > 高中数学 > 题目详情
2.已知等差列{an}的前n项和为Sn,且a2+a4=16,则S5=(  )
A.-31B.20C.31D.40

分析 由等差数列通项公式及前n项和公式得S5=$\frac{5}{2}({a}_{1}+{a}_{5})=\frac{5}{2}({a}_{2}+{a}_{4})$,由此能求出结果.

解答 解:∵等差列{an}的前n项和为Sn,且a2+a4=16,
∴S5=$\frac{5}{2}({a}_{1}+{a}_{5})=\frac{5}{2}({a}_{2}+{a}_{4})$=$\frac{5}{2}×16$=40.
故选:D.

点评 本题考查等差数列的前5项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知an=log(n+1)(n+2)(n∈N+),我们把使乘积a1•a2•a3…•an为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为(  )
A.1024B.2003C.2026D.2048

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:椭圆x2+4y2=1上存在点M到直线l:x+2y-6$\sqrt{2}$=0的距离为1,命题q:椭圆2x2+27y2=54与双曲线9x2-16y2=144有相同的焦点,则下列命题为真命题的是(  )
A.p∧(¬q)B.(¬p)∧qC.(¬p)∧(¬q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题为真命题的是(  )
A.命题:“若x=3,则x2=9”的否命题是:“若x=3,则x2≠9”
B.若a=2且b=1,则a+b=3的逆否命题
C.命题:?x∈R,x2>0
D.命题:“?x∈R,使得sinx≥1”的否定是:“?x∈R,均有sinx≤1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题正确的是(  )
A.对?x,y∈R,若x+y≠0,则x≠1且y≠-1
B.设随机变量X~N(1,52),若P(X≤0)=P(X≥a-2),则实数a的值为2
C.命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.${∫}_{0}^{1}$(x2+$\sqrt{1-{x}^{2}}$)dx=$\frac{π}{4}$+$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,且过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(1)求椭圆C的标准方程;
(2)椭圆C上不同的两点M,N满足$\overrightarrow{OM}$$•\overrightarrow{ON}$=0(其中O为坐标原点),求证:$\frac{1}{|OM{|}^{2}}$$+\frac{1}{|ON{|}^{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\frac{ax-a}{{e}^{x}}+1$有且仅有两个零点,则实数a的取值范围为(  )
A.(-e2,0]B.(-∞,-e2C.[-e2,0]D.[-e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}{2x+y≥4}\\{4x-y≤8}\\{x-y≥-1}\end{array}\right.$,则z=x2+y2-2x的取值范围是(  )
A.[0,19]B.[$-\frac{1}{5},3$]C.[$-\frac{1}{5},0$]D.[$-\frac{1}{5},19$]

查看答案和解析>>

科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(理)试卷(解析版) 题型:填空题

上的偶函数,且在上是增函数,若,则的解集是

查看答案和解析>>

同步练习册答案