精英家教网 > 高中数学 > 题目详情
4.已知三棱柱ABC-A1B1C1的底面ABC是边长为1的正三角形,侧棱AA1与底面所成的角是60°,在侧棱AA1,BB1,CC1上分别有点P,Q,R且AP=$\frac{3}{2}$,BQ=1,CR=$\frac{1}{2}$,则截面PQR与底面ABC之间的几何体的体积是(  )
A.$\frac{3}{8}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{4}$D.$\frac{\sqrt{3}}{2}$

分析 作截面MQN∥平面ABC,可得VP-MQN=VR-MQN
即截面PQR与底面ABC之间的几何体的体积等于VMQN-ABC
由三棱柱ABC-MQN的高h=AM•sin60°=$\frac{\sqrt{3}}{2}$可求得截面PQR与底面ABC之间的几何体的体积.

解答 解:如图,作截面MQN∥平面ABC,
∵PM=RN,∴VP-MQN=VR-MQN
所以截面PQR与底面ABC之间的几何体的体积等于VMQN-ABC
三棱柱ABC-MQN的高h=AM•sin60°=$\frac{\sqrt{3}}{2}$
VMQN-ABC=SABC•h=$\frac{\sqrt{3}}{4}×\frac{\sqrt{3}}{2}=\frac{3}{8}$
故选:A

点评 本题考查了不规则几何体的体积转化为斜棱柱的体积处理方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届重庆市高三10月月考数学(文)试卷(解析版) 题型:填空题

,则_________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,若acosA=bcosB,C=60°,则△ABC的形状为(  )
A.等腰三角形B.直角三角形
C.等边三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知an=log(n+1)(n+2)(n∈N+),我们把使乘积a1•a2•a3…•an为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为(  )
A.1024B.2003C.2026D.2048

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l:4x-3y+m=0(m<0)被圆C:x2+y2+2x-2y-6=0所截的弦长是圆心C到直线l的距离的2倍,则m等于(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.四面体OABC四个顶点在空间直角坐标系中的坐标分别为:O(0,0,0)、A(2,0,0)、B(0,4,0)、C(0,2,2),则四面体OABC外接球的表面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sinα+cosα=-$\frac{1}{5}$,α为第二象限角.
(1)求sinα-cosα的值;
(2)求$\frac{sin(\frac{π}{2}-α)+sin(π-α)}{cos2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:椭圆x2+4y2=1上存在点M到直线l:x+2y-6$\sqrt{2}$=0的距离为1,命题q:椭圆2x2+27y2=54与双曲线9x2-16y2=144有相同的焦点,则下列命题为真命题的是(  )
A.p∧(¬q)B.(¬p)∧qC.(¬p)∧(¬q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\frac{ax-a}{{e}^{x}}+1$有且仅有两个零点,则实数a的取值范围为(  )
A.(-e2,0]B.(-∞,-e2C.[-e2,0]D.[-e2,+∞)

查看答案和解析>>

同步练习册答案