精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,DE∥BC,EF∥CD,且AB=2,AD=
2
,则AF=
 

考点:相似三角形的性质
专题:立体几何
分析:由已知得△ADE∽△ABC,△AFE∽△ADC,从而
AD
AB
=
AE
AC
=
AF
AD
,由此能求出AF=
AD2
AB
=
(
2
)2
2
=1.
解答: 解:∵在△ABC中,DE∥BC,EF∥CD,
且AB=2,AD=
2

∴△ADE∽△ABC,△AFE∽△ADC,
AD
AB
=
AE
AC
=
AF
AD

∴AF=
AD2
AB
=
(
2
)2
2
=1.
故答案为:1.
点评:本题考查三角形中线段长的求法,是基础题,解题时要注意相似三角形的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
2a+acosx+3sinx
2+cosx
(a、b∈R)有最大值和最小值,且最大值与最小值的和为6,则a=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=Asin(ωx+φ)图象的一部分如图所示,则此函数的解析式可以写成(  )
A、y=sin(2x+
π
4
B、y=sin(x+
π
8
C、y=sin(2x+
π
8
D、y=sin(2x-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

程序框图如图所示,则输出S的值为(  )
A、15B、21C、22D、28

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且当x>0时f(x)=
log2x,0<x≤16
f(x-8),x>16
,则f(f(-24))=(  )
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,短轴端点到焦点的距离为2.
(1)求椭圆C的方程;
(2)设点A,B是椭圆C上的任意两点,O是坐标原点,且OA⊥OB,
①求证:原点O到直线AB的距离为定值,并求出该定值;
②任取以椭圆C的长轴为直径的圆上一点P,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知周长为40的△ABC的顶点B、C在椭圆
x2
a2
+
y2
b2
=1上,顶点A(6,0)是椭圆的一个焦点,且椭圆的另外一个焦点在边BC上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a5+a6=7,则S10=(  )
A、35B、70C、42D、49

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域为[-3,5],则函数g(x)=f(x+1)+f(x-2)的定义域是(  )
A、[-2,3]
B、[-1,3]
C、[-1,4]
D、[-3,5]

查看答案和解析>>

同步练习册答案