精英家教网 > 高中数学 > 题目详情
19.在三棱锥ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1⊥底面ABC,AA1=$\frac{\sqrt{3}}{2}$,P、Q分别是AB、AC上的点,且PQ∥BC.
(Ⅰ)若平面A1PQ与平面A1B1C1相交于直线l,求证:l∥B1C1
(Ⅱ)当平面A1PQ⊥平面PQC1B1时,确定点P的位置并说明理由.S.

分析 (Ⅰ)利用线面平行的性质证明l∥B1C1
(Ⅱ)作PQ的中点M,B1C1的中点N,连接A1M,MN,A1N,
利用线面垂直的判定证明A1M⊥PQ,A1M⊥MN,即可平面A1PQ⊥面PQB1C1
再利用余弦定理即可确定P点的位置.

解答 解:(Ⅰ)证明:∵PQ∥BC∥B1C1,B1C1?面A1B1C1,PQ?面 A1B1C1
∴PQ∥面A1B1C1;…(2分)
∵面A1PQ∩面A1B1C1=l,∴PQ∥l,…(3分)
∴l∥B1C1; …(6分)
(Ⅱ)P为AB的中点时,平面A1PQ⊥面PQC1B1
证明如下:作PQ的中点M,B1C1的中点N,连接A1M,MN,A1N,
∵PQ∥BC,AP=AQ,进而A1Q=A1P,∴A1M⊥PQ,
∵平面A1PQ⊥面PQC1B1,平面A1PQ∩面PQC1B1=PQ,
∴A1M⊥面PQC1B1,而MN?面PQC1B1
∴A1M⊥MN,即△A1MN为直角三角形;
连接AM并延长交BC于G,显然G是BC的中点,
设AP=x,则PB=2-x,则由$\frac{AM}{AG}$=$\frac{AP}{AB}$,可得$\frac{AM}{\sqrt{3}}$=$\frac{x}{2}$,解得AM=$\frac{\sqrt{3}}{2}$x,
在Rt△AA1M中,${{A}_{1}M}^{2}$=${{AA}_{1}}^{2}$+AM2=$\frac{3}{4}$+$\frac{3}{4}$x2
同理MG=AG-AM=$\sqrt{3}$-$\frac{\sqrt{3}}{2}$x,
在Rt△MGN中,MN2=MG2+GN2=${(\sqrt{3}-\frac{\sqrt{3}}{2}x)}^{2}$+${(\frac{\sqrt{3}}{2})}^{2}$=$\frac{15}{4}$-3x+$\frac{3}{4}$x2
∴在Rt△A1MN中,${{A}_{1}N}^{2}$=${{A}_{1}M}^{2}$+MN2
即3=$\frac{3}{4}$+$\frac{3}{4}$x2+$\frac{15}{4}$-3x+$\frac{3}{4}$x2
解得x=1,即AP=1,此时P为AB的中点.…(12分).

点评 本题考查的是线面平行的性质,平面与平面垂直的判定,考查余弦定理,考查学生分析解决问题的能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在复平面内,表示复数2-3i(i是虚数单位)的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中错误的是(  )
A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m∥n,n∥β,则α⊥β
C.若m⊥α,m⊥β,则α∥βD.若m∥α,n∥β,α∥β,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的各项均是正数,其前n项和为Sn,满足Sn=4-an
(1)求数列{an}的通项公式;
(2)设bn=$\left\{\begin{array}{l}{{log}_{{\frac{1}{2}}^{{a}_{n}}}}(n为奇数)\\{{a}_{n}(n为偶数)}\end{array}\right.$(n∈N*),求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(m+1,1),$\overrightarrow{b}$=(m+2,2),若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=(  )
A.-3B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知随机变量X服从正态分布N(2,σ2),其正态分布密度曲线为函数f(x)的图象,且${∫}_{0}^{2}$f(x)dx=$\frac{1}{3}$,则P(x>4)=(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知变量x与y正相关,且由观测数据算得样本平均数$\overline x$=3,$\overline y$=3.5,则由观测数据所得线性回归方程可能是(  )
A.$\stackrel{∧}{y}$=2x-2.1B.$\stackrel{∧}{y}$=-2x+9.5C.$\stackrel{∧}{y}$=0.3x+2.6D.$\stackrel{∧}{y}$=-0.3x+4.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.二项式(x+$\frac{1}{\root{3}{x}}$-4y)7展开式中不含x的项的系数之和为-47-44${∁}_{7}^{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,点M是SD的中点,AN⊥SC,且交SC于点N.
(1)求证:SC⊥平面AMN;
(2)求二面角D-AC-M的余弦值.

查看答案和解析>>

同步练习册答案