精英家教网 > 高中数学 > 题目详情
12.已知cos($\frac{π}{4}$-x)=-$\frac{3}{5}$,求$\frac{sin2x}{sin(x+\frac{π}{4})}$的值.

分析 由条件利用应用诱导公式、二倍角公式化简要求的式子,可得结果.

解答 解:cos($\frac{π}{4}$-x)=-$\frac{3}{5}$,
∴$\frac{sin2x}{sin(x+\frac{π}{4})}$=$\frac{-cos(2x+\frac{π}{2})}{cos(\frac{π}{4}-x)}$=$\frac{{sin}^{2}(x+\frac{π}{4}){-cos}^{2}(x+\frac{π}{4})}{cos(\frac{π}{4}-x)}$=$\frac{{cos}^{2}(\frac{π}{4}-x){-sin}^{2}(\frac{π}{4}-x)}{cos(\frac{π}{4}-x)}$=$\frac{{(-\frac{3}{5})}^{2}{-(±\frac{4}{5})}^{2}}{-\frac{3}{5}}$=$\frac{7}{15}$.

点评 本题主要考查应用诱导公式、二倍角公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.当0<x<a时,不等式$\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$≥4恒成立,则a的取值范围为(0,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0)图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)设α,β∈[-$\frac{π}{2}$,0],f(3α+π)=$\frac{10}{13}$,f(3β+$\frac{5π}{2}$)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,P是⊙O的直径CB的延长线上的点,PA与⊙O相切于点A,点D在⊙O上,∠BAD=∠APC,BC=40,PB=5
(Ⅰ)求证:tan∠ABC=3;
(Ⅱ)求AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知e是自然对数的底数,函数f(x)=ex(x2+5x-2),则f(x)的单调递减区间为[$\frac{-7-\sqrt{37}}{2}$,$\frac{-7+\sqrt{37}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,设极点O到直线l的距离为3,过点O作直线l的垂线,垂足为A,由极轴到OA的角为$\frac{π}{3}$,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1与圆C2的极坐标方程及两圆交点的极坐标;
(Ⅱ)求圆C1与圆C2的公共弦的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=f(x)=$\frac{x+2}{{x}^{2}+x+1}$(x>-2),求$\frac{1}{y}$的取值范围和此函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:
支持不支持合计
中型企业8040120
小型企业240200440
合计320240560
(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0250.010
k03.8415.0246.635

查看答案和解析>>

同步练习册答案