精英家教网 > 高中数学 > 题目详情
(2013·盐城二模)已知函数f(x)=4sinxcos(x+)+.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最大值和最小值及取得最值时x的值.
(1)π(2)x=-时,f(x)min=-1,x=时,f(x)max=2.
(1)f(x)=4sinx(cosxcos-sinxsin)+=2sinxcosx-2sin2x+
=sin2x+cos2x=2sin.所以T==π.
(2)因为-≤x≤,所以-≤2x+
所以-≤sin≤1,所以-1≤f(x)≤2,
当2x+=-,即x=-时,f(x)min=-1,
当2x+,即x=时,f(x)max=2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

ab=(4sinx,cosx-sinx),f(x)=a·b.
(1)求函数f(x)的解析式;
(2)已知常数ω>0,若y=f(ωx)在区间上是增函数,求ω的取值范围;
(3)设集合A=,B={x||f(x)-m|<2},若AB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的最小值为,其图像相邻最高点与最低点横坐标之差为,且图像过点(0,1),则其解析式是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=cosx·cos(x-).
(1)求f的值;
(2)求使f(x)<成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)的部分图象如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).

(1)求f(x)的最小正周期及φ的值;
(2)若点R的坐标为(1,0),∠PRQ=,求A的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的周期为π,且图象上一个最低点为M.
(1)求f(x)的解析式;
(2)当x∈时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=cos(3x-θ)-sin(3x-θ)是奇函数,则θ为(  )
A.kπ(k∈Z)B.kπ+(k∈Z)
C.kπ+(k∈Z)D.-kπ-(k∈Z)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=cos·cos(x+)的最小正周期为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的部分图象如图所示,则的值分别是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案