| A. | $\frac{2}{3}$ | B. | 1 | C. | 2 | D. | 4 |
分析 求得椭圆的焦点,可得双曲线的c,由离心率公式可得a,连接MF1,利用ON是△MF1F2的中位线,|ON|=$\frac{1}{2}$|MF1|,再由双曲线的定义求出|MF1|,进而得到|ON|的值.
解答
解:椭圆$\frac{x^2}{36}+\frac{y^2}{2}=1$的焦点
为(±$\sqrt{34}$,0),
可得双曲线的c=$\sqrt{34}$,
离心率为$e=\frac{{\sqrt{34}}}{5}$,可得a=5,
由双曲线左支上有一点M到右焦点F2的距离为18,
N是MF2的中点,
连接MF1,
ON是△MF1F2的中位线,
可得ON∥MF1,
|ON|=$\frac{1}{2}$|MF1|,
由双曲线的定义知,|MF2|-|MF1|=2×5,
∴|MF1|=8.
∴|ON|=4,
故选:D.
点评 本题考查椭圆的焦点和双曲线的焦点,考查双曲线的定义,考查三角形中位线的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 91.5和91.5 | B. | 91.5和92 | C. | 91和91.5 | D. | 92和92 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4x<3sinx | B. | 4x>3sinx | C. | 4x=3sinx | D. | 与x取值有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com