分析 (1)由正弦定理化简已知可求b2+c2-a2=bc,由余弦定理可得cosA,结合A为三角形内角,可得A的值.(2)利用余弦定理可求c,利用三角形面积公式即可得解.
解答 (本题满分为12分)
解:(1)在△ABC中.由正弦定理得:2a2=(2b-c)•b+(2c-b)•c,
则:b2+c2-a2=bc,
由余弦定理可得:$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{bc}{2bc}=\frac{1}{2}$,
由于A为三角形内角,可得:$A=\frac{π}{3}$.…(6分)
(2)若$a=\sqrt{3},b=2$,$cosA=\frac{{4+{c^2}-3}}{2•2c}=\frac{1}{2}$,
由余弦定理可得:($\sqrt{3}$)2=22+c2-2×$2×c×\frac{1}{2}$,整理可得:c2-2c+1=0,
解得:c=1.
所以△ABC的面积是${S_{ABC}}=\frac{1}{2}•b•c•sinA=\frac{{\sqrt{3}}}{2}$.…(12分)
点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 16 | 17 | 18 | 19 |
| y | 50 | 34 | 41 | 31 |
| A. | 30 | B. | 29 | C. | 27.5 | D. | 26.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com