精英家教网 > 高中数学 > 题目详情
15.如图,在△ABC内取一点M,使得∠MBA=30°,∠MAC=40°,且MA=MB=BC,求∠MAB.

分析 等腰三角形的底角相等.

解答 解:∵∠MBA=30°,MA=MB,∴∠MAB=∠MBA=30°

点评 本题考查等腰三角形的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.经过点(-1,1),斜率是直线y=$\frac{\sqrt{2}}{2}$x-2的斜率的2倍的直线方程是(  )
A.x=-1B.y=1C.y-1=$\sqrt{2}$(x+1)D.y-1=2$\sqrt{2}$(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)在定义域R内可导,f(x)=f(2-x),当x∈(1,+∞)时,(x-1)f′(x)<0,设a=f(log32),b=f(log52),c=f(log25),则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在边长为1的正方形OABC内任取一点P(x,y).
(1)求△APB的面积大于$\frac{1}{4}$的概率;
(2)求点P到原点的距离小于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若关于x的方程a2x-2-ax+3=0(1≠a>0)有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3+ax2+bx+c,当x=-1时,f(x)的极大值为7;当x=3时,f(x)有极小值.
求(1)a,b,c的值;
(2)函数f(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别是a,b,c,若2asinA=(2b-c)sinB+(2c-b)sinC.
(1)求角A;
(2)若$a=\sqrt{3},b=2$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.{an}是首项为1,公差为3的等差数列,如果an=2 014,则序号n等于(  )
A.667B.668C.669D.672

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b是两条不同的直线,α,β为两个不重合的平面,下列命题中的真命题的是(  )
A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥b
C.若a?α,b?β,α⊥β,则 a⊥bD.若a⊥α,b⊥β,α∥β,则a∥b

查看答案和解析>>

同步练习册答案