精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x3-3x,若过点M(2,t)可作曲线y=f(x)的两条切线,且点M不在函数f(x)的图象上,则实数t的值为-6.

分析 设切点为(a,a3-3a),利用导数的几何意义,求得切线的斜率k=f′(a),利用点斜式写出切线方程,将点M代入切线方程,可得关于a的方程有两个不同的解,利用参变量分离可得2a3-6a2=-6-m,令g(x)=2x3-6x2,利用导数求出g(x)的单调性和极值,则根据y=g(x)与y=-6-t有两个不同的交点,即可得到t的值.

解答 解:设切点为(a,a3-3a),
f(x)=x3-3x,可得f′(x)=3x2-3,
即有切线的斜率k=f′(a)=3a2-3,
由点斜式可得切线方程为y-(a3-3a)=(3a2-3)(x-a),
切线过点M(2,t),
可得t-(a3-3a)=(3a2-3)(2-a),即2a3-6a2=-6-t,
由过点M(2,t)(t≠2)可作曲线y=f(x)的两条切线,
即有关于a的方程2a3-6a2=-6-t有两个不同的根,
令g(x)=2x3-6x2
g′(x)=6x2-12x=0,解得x=0或x=2,
当x<0时,g′(x)>0,当0<x<2时,g′(x)<0,当x>2时,g′(x)>0,
g(x)在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,
当x=0时,g(x)取得极大值g(0)=0,
当x=2时,g(x)取得极小值g(2)=-8,
关于a的方程2a3-6a2=-6-t有两个不同的根,
等价于y=g(x)与y=-6-t的图象有两个不同的交点,
可得-6-t=-8或-6-t=0,解得t=2或-6,
由M不在函数f(x)的图象上,可得t=-6.
故答案为:-6.

点评 本题考查了利用导数研究曲线上某点切线方程,导数的几何意义即在某点处的导数即该点处切线的斜率,利用导数研究函数的切线问题,解题时要注意运用切点在曲线上和切点在切线上.运用了转化的数学思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,以点(1,0)为圆心,且与直线x-y-3=0相切的圆的标准方程为(x-1)2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.
(1)若(a-sinB)cosC=cosBsinC,且c=1,求∠C的大小;
(2)若△ABC的面积为$\frac{1}{4}$a2,求$\frac{(b+c)^{2}}{2bc}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax3+blnx在点(1,0)处的切线的斜率为1.
(1)求a,b的值;
(2)是否存在实数t使函数F(x)=f(x)+lnx的图象恒在函数g(x)=$\frac{t}{x}$的图象的上方,若存在,求出t的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题的逆命题为真命题的是(  )
A.若x>2,则(x-2)(x+1)>0B.若x2+y2≥4,则xy=2
C.若x+y=2,则xy≤lD.若a≥b,则ac2≥bc2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递减函数是(  )
A.f(x)=${x}^{\frac{1}{2}}$B.f(x)=x3C.f(x)=($\frac{1}{2}$)xD.f(x)=lo${g}_{\frac{1}{2}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.曲线f(x)=2lnx+$\frac{1}{x}$在点(1,f(1))处的切线方程为y=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,求当半径最小时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=lg($\frac{2}{1-x}$+a)是奇函数,则使f(x)<0的x的取值范围是(  )
A.(0,1)B.(-1,0)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

同步练习册答案