精英家教网 > 高中数学 > 题目详情
设f(n)=k(其中n∈N*),k是
2
的小数点后第n位数字,
2
=1.41421356237,则f{f…f[f(8)]},的值等于
 
考点:函数的值
专题:函数的性质及应用
分析:由已知中函数f(n)=k(其中n∈N*),k是的小数点后第n位数字,将8代入计算后,依次代入…即可得到结论.
解答: 解:∵
2
=1.41421356237
∴f(8)=6,f(6)=3,f(3)=4,f(4)=2,
f(2)=1,f(1)=4,f(4)=2,f(2)=1,
故f{f…f[f(8)]}=f(2)=1,
故答案为:1
点评:本题主要考查函数值的计算,根据已知表达式,直接代入即可得到结论,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线.
(Ⅰ)分别求出凸四边形,凸五边形,凸六边形的对角线的条数;
(Ⅱ)猜想凸n边的对角线条数f(n),并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
=(2,3)
b
=(x,-6)
,且
a
b
,则实数x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b∈R+,且a+b=3,则以a、b作为两边长的三角形面积最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC所在平面上一点,且
OA
+2
OB
+3
OC
=
0
,则△OBC和△ABC的面积比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(a,b)关于直线l的对称点为P′(b+1,a-1),则圆C:x2+y2-6x-2y=0关于直线L对称的圆C′的方程为(  )
A、(x-2)2+(y-2)2=10
B、(x-2)2-(y-2)2=10
C、(x-2)2+(y+2)2=10
D、(x+2)2+(y-2)2=10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-|x-1|,x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,则下列说法中正确命题的个数是(  )
①函数y=f(x)-ln(x+1)有3个零点;
②若x>0时,函数f(x)≤
k
x
恒成立,则实数k的取值范围是[
3
2
,+∞);
③函数f(x)的极大值中一定存在最小值;
④f(x)=2kf(x+2k),(k∈N),对于一切x∈[0,+∞)恒成立.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①命题:“?x0∈R,使得x2-x>0”的否定是“?x∈R,都有x2-x≤0”;
②已知随机变量x服从正态分布N(1,σ2),P(x≤4)=0.79,则P(x≤-2)=0.21;
③函数f(x)=2sinxcosx-1,(x∈R)图象关于直线x=
4
对称,且在区间[-
π
4
π
4
]
上是增函数;
④设实数x,y∈[0,1],则满足:x2+y2<1的概率为
π
4

其中错误的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1
2
ax2-x-lnx

(1)当a=2时,求f(x)的单调区间;
(2)若f(x)在[2,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

同步练习册答案