精英家教网 > 高中数学 > 题目详情
7.已知点A1,A2的坐标分别为(-2,0),(2,0).直线A1M,A2M相交于点M,且它们的斜率之积是$-\frac{3}{4}$.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)已知点A(1,t)(t>0)是轨迹C上的定点,E,F是轨迹C上的两个动点,如果直线AE与直线AF的斜率存在且互为相反数,求直线EF的斜率.

分析 (I)设M(x,y),根据斜率关系列方程化简即可;
(II)设AE的斜率为k,则AF的斜率为-k,联立直线方程与椭圆方程,根据根与系数的关系求出E,F的坐标,代入斜率公式化简得出答案.

解答 解:(I)设M(x,y),则kAM=$\frac{y}{x+2}$,kBM=$\frac{y}{x-2}$.
∴$\frac{{y}^{2}}{{x}^{2}-4}=-\frac{3}{4}$,即$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
∴点M的轨迹方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(II)由椭圆方程得E(1,$\frac{3}{2}$).
设直线AE方程为y=k(x-1)+$\frac{3}{2}$.则直线AF的方程为y=-k(x-1)+$\frac{3}{2}$.
联立方程组$\left\{\begin{array}{l}{y=k(x-1)+\frac{3}{2}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消元得:(3+4k2)x2+4k(3-2k)x+4($\frac{3}{2}$-k)2-12=0,
设E(xE,yE),F(xF,yF),
∵点A(1,$\frac{3}{2}$)在椭圆上,
∴xE=$\frac{4(\frac{3}{2}-k)^{2}-12}{3+4{k}^{2}}$,yE=k(xE-1)+$\frac{3}{2}$.
同理可得:xF=$\frac{4(\frac{3}{2}+k)^{2}-12}{3+4{k}^{2}}$,yF=-k(xF-1)+$\frac{3}{2}$.
∵xE+xF=$\frac{4(\frac{3}{2}-k)^{2}-12}{3+4{k}^{2}}$+$\frac{4(\frac{3}{2}+k)^{2}-12}{3+4{k}^{2}}$=$\frac{8{k}^{2}-6}{4{k}^{2}+3}$,xE-xF=$\frac{4(\frac{3}{2}-k)^{2}-12}{3+4{k}^{2}}$-$\frac{4(\frac{3}{2}+k)^{2}-12}{3+4{k}^{2}}$=-$\frac{24k}{4{k}^{2}+3}$.
∴kEF=$\frac{{y}_{E}-{y}_{F}}{{x}_{E}-{x}_{F}}$=$\frac{k({x}_{E}+{x}_{F})-2k}{{x}_{E}-{x}_{F}}$=$\frac{1}{2}$.

点评 本题考查了轨迹方程的求解,直线与椭圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足x2+y2-8x-8y+28=0,则x2+y2的最小值为(  )
A.18B.3$\sqrt{2}$C.36-16$\sqrt{2}$D.4$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M.
(Ⅰ)若过点M的直线l与抛物线C有且只有一个交点,求直线l的方程;
(Ⅱ)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设直线l与抛物线x2=2y交于A,B两点,与椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$交于C,D两点,直线OA,OB,OC,OD(O为坐标原点)的斜率分别为k1,k2,k3,k4.若OA⊥OB.
(Ⅰ)是否存在实数t,满足k1+k2=t(k3+k4),并说明理由;
(Ⅱ)求△OCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F是抛物线C:y2=2px(p>0)的焦点,⊙M过坐标原点和F点,且圆心M到抛物线C的准线距离为$\frac{3}{2}$
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知抛物线C上的点N(s,4),过N作抛物线C的两条互相垂直的弦NA和NB,判断直线AB是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点A(1,2)在抛物线y2=2px上,抛物线的焦点为F,直线AF与抛物线的另一交点为B,则|AB|=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$\frac{(1+i)^{3}}{(1-i)^{2}}$=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过抛物线x2=8y的焦点F的直线与其相交于A,B两点,O为坐标原点.若|AF|=6,则△OAB的面积为6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,可以作为正态分布密度函数的是(  )
A.φμ,σ(x)=$\frac{1}{\sqrt{2π}}$e${\;}^{-\frac{(x-1)^{2}}{2}}$B.φμ,σ(x)=$\frac{1}{\sqrt{2π}•σ}$e${\;}^{\frac{(x-2)^{2}}{2{σ}^{2}}}$
C.φμ,σ(x)=$\frac{1}{\sqrt{2πσ}}$e${\;}^{-\frac{(x-μ)^{2}}{2{σ}^{2}}}$D.φμ,σ(x)=$\frac{1}{\sqrt{2π}}$e${\;}^{-\frac{(x-μ)^{2}}{2{σ}^{2}}}$

查看答案和解析>>

同步练习册答案