精英家教网 > 高中数学 > 题目详情
3.若实数x,y满足x2+y2-8x-8y+28=0,则x2+y2的最小值为(  )
A.18B.3$\sqrt{2}$C.36-16$\sqrt{2}$D.4$\sqrt{2}$-2

分析 方程表示一个圆,而x2+y2的表示圆上的点到原点距离的平方,求得圆上的点到原点的最小距离,可得x2+y2的最小值.

解答 解:方程x2+y2-8x-8y+28=0,即 (x-4)2+(y-4)2 =4,表示以C(4,4)为圆心,半径等于2的圆.
而x2+y2的表示圆上的点到原点距离的平方,
由于圆心C到原点的距离CO=4$\sqrt{2}$,故圆上的点到原点的最小距离为4$\sqrt{2}$-2.
∴x2+y2的最小值为${(4\sqrt{2}-2)}^{2}$=36-16$\sqrt{2}$,
故选:C.

点评 本题主要考查圆的一般方程和标准方程,两点间的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)已知a>b>0,c>d>0.求证:$\frac{ac}{a+c}$>$\frac{bd}{b+d}$;
(2)已知c>a>b>0,求证:$\frac{a}{c-a}$>$\frac{b}{c-b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.锐角三角形ABC中,已知B=$\frac{π}{4}$,求$\sqrt{2}$cosA+cosC取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.化简:$\frac{\sqrt{1-sin\frac{π}{8}}}{sin\frac{π}{16}-cos\frac{π}{16}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点M(-2,0),N(2,0),B(-1,0),动圆C与直线MN相切于点B,过M,N与圆C相切的两直线相交于点P(异于点M,N),则P点的轨迹方程为(  )
A.x2-$\frac{{y}^{2}}{3}$=1(x>1)B.x2-$\frac{{y}^{2}}{5}$=1(x<-1)C.x2-$\frac{{y}^{2}}{3}$=1(x<0)D.x2-$\frac{{y}^{2}}{3}$=1(x<-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=loga(-1+ax)在[2,4]上是减函数,则a的取值范围是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={y∈R|y=x2},B={x∈R|x2+y2=2},则A∩B=(  )
A.$[{0,\sqrt{2}}]$B.{(-1,1),(1,1)}C.{1}D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-$\frac{7}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A1,A2的坐标分别为(-2,0),(2,0).直线A1M,A2M相交于点M,且它们的斜率之积是$-\frac{3}{4}$.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)已知点A(1,t)(t>0)是轨迹C上的定点,E,F是轨迹C上的两个动点,如果直线AE与直线AF的斜率存在且互为相反数,求直线EF的斜率.

查看答案和解析>>

同步练习册答案