精英家教网 > 高中数学 > 题目详情
6.设向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-$\frac{7}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

分析 求出向量$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$的坐标,根据向量平行列方程解出m,再计算$\overrightarrow{a}•\overrightarrow{b}$.

解答 解:$\overrightarrow{a}+2\overrightarrow{b}$=(2m-1,4),2$\overrightarrow{a}-\overrightarrow{b}$=(-2-m,3).
∵向量$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,
∴3(2m-1)-4(-2-m)=0,
解得m=-$\frac{1}{2}$.
∴$\overrightarrow{a}•\overrightarrow{b}$=-m+2=$\frac{5}{2}$.
故选:D.

点评 本题考查了平面向量的坐标运算与数量积运算,向量平行与坐标的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2ex+2ax-a2,a∈R.
(1)当a=1时,求f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)的单调区间;
(3)若x≥0时,f(x)≥x2-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足x2+y2-8x-8y+28=0,则x2+y2的最小值为(  )
A.18B.3$\sqrt{2}$C.36-16$\sqrt{2}$D.4$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=loga(x+2)(a>0,a≠1)的图象必过定点(  )
A.(-1,1)B.(1,2)C.(-1,0)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A,B为抛物线y2=x上相异两点,其纵坐标分别为-1,2,分别以A,B为切点作抛物线的切线l1,l2,设l1,l2相交于点P.
(Ⅰ)求点P的坐标;
(Ⅱ)M为A,B间抛物线段上任意一点,设$\overrightarrow{PM}=λ\overrightarrow{PA}+μ\overrightarrow{PB}$,试判断$\sqrt{λ}+\sqrt{μ}$是否为定值,如果为定值,求出该定值,如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.中国经济的高速增长带动了居民收入的提高,为了调查高收入(年收入是当地人均年收入10倍以上)人群的年龄分布情况,某校学生利用暑假进行社会实践,对年龄在[25,55)内的人群随机调查了1000人的收入情况,根据调查结果和收集的数据得到如下统计表和各年龄段人数的频率分布直方图.
组别分组高收入的人数高收入人数占本组的比例
第一组[25,30)180.12
第二组[30,35)360.144
第三组[35,40)480.192
第四组[40,45)A0.15
第五组[45,50)12b
第六组[50,55)60.12

(1)补全频率分布直方图,根据频率分布直方图,求这1000人年龄的中位数;
(2)求统计表中a,b的值,为了分析高收入居民人数与年龄的关系,要从高收入人群中按年龄组用分层抽样的方法抽取25人作进一步分析,则年龄在[30,40)内的高收入人群应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M.
(Ⅰ)若过点M的直线l与抛物线C有且只有一个交点,求直线l的方程;
(Ⅱ)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设直线l与抛物线x2=2y交于A,B两点,与椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$交于C,D两点,直线OA,OB,OC,OD(O为坐标原点)的斜率分别为k1,k2,k3,k4.若OA⊥OB.
(Ⅰ)是否存在实数t,满足k1+k2=t(k3+k4),并说明理由;
(Ⅱ)求△OCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过抛物线x2=8y的焦点F的直线与其相交于A,B两点,O为坐标原点.若|AF|=6,则△OAB的面积为6$\sqrt{2}$.

查看答案和解析>>

同步练习册答案