分析 由二倍角公式和求出sin2α=$\frac{24}{25}$,再根据同角的三角函数的关系求出cos2α,根据两角差的正弦公式即可求出.
解答 解:由sinα-cosα=$\frac{1}{5}$平方得 sin2α+cos2α-2sinαcosα=$\frac{1}{25}$,即sin2α=$\frac{24}{25}$,
∵0<α<$\frac{π}{2}$,sinα-cosα>0,
∴$\frac{π}{4}$<α<$\frac{π}{2}$,
∴$\frac{π}{2}$<2α<π,
∴cos2α<0,
∴cos2α=-$\sqrt{1-si{n}^{2}2α}$=-$\frac{7}{25}$,
∴sin(2α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$sin2α-$\frac{\sqrt{2}}{2}$cos2α=$\frac{31\sqrt{2}}{50}$
点评 本题主要考察了二角差的正弦公式,二倍角公式的应用,熟练灵活的应用相关公式是解题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -1 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{9}{4}$ | B. | -$\frac{4}{9}$ | C. | -$\frac{3}{8}$ | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com