精英家教网 > 高中数学 > 题目详情
1.在△ABC中,若|sinA-$\frac{\sqrt{2}}{2}$|+(cosB-$\frac{\sqrt{2}}{2}$)2=0,则∠C的度数是(  )
A.30°B.45°C.90°D.105°

分析 根据三角形的内角和的性质,结合题意,即可求出三个内角的度数.

解答 解:△ABC中,|sinA-$\frac{\sqrt{2}}{2}$|+(cosB-$\frac{\sqrt{2}}{2}$)2=0,
∴$\left\{\begin{array}{l}{sinA-\frac{\sqrt{2}}{2}=0}\\{cosB-\frac{\sqrt{2}}{2}=0}\end{array}\right.$,
解得sinA=$\frac{\sqrt{2}}{2}$,cosB=$\frac{\sqrt{2}}{2}$;
∴B=45°,
∴A=45°;
∴C=180°-B-A=90°.
故选:C.

点评 本题考查了三角形的内角和定理与特殊角的三角函数值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.复数1+3i的模为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知角α的终边经过一点P(1,4$\sqrt{3}$),cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.
(1)求tanα+tan2α的值;(2)求β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$,求a1与q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|x2-1<0},则A∩B=(  )
A.B.{x|0≤x<1}C.{x|x≥0}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若m>0,n>0,m+n=1,且$\frac{t}{m}+\frac{1}{n}$(t>0)的最小值为9,则t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在钝角△ABC中,∠A为钝角,令$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow{b}$=$\overrightarrow{AC}$,若$\overrightarrow{AD}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$(x,y∈R).现给出下面结论:
①当x=$\frac{1}{3},y=\frac{1}{3}$时,点D是△ABC的重心;
②记△ABD,△ACD的面积分别为S△ABD,S△ACD,当x=$\frac{4}{5},y=\frac{3}{5}$时,$\frac{{{S_{△ABD}}}}{{{S_{△ACD}}}}=\frac{3}{4}$;
③若点D在△ABC内部(不含边界),则$\frac{y+1}{x+2}$的取值范围是$(\frac{1}{3},1)$;
④若$\overrightarrow{AD}$=λ$\overrightarrow{AE}$,其中点E在直线BC上,则当x=4,y=3时,λ=5.
其中正确的有①②③(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知tanα=2,则$\frac{2cosα}{sinα-cosα}$=2.

查看答案和解析>>

同步练习册答案