【题目】在如图所示的几何体中,底面是矩形,平面平面,平面平面,是边长为4的等边三角形,.
(1)求证:;
(2)求二面角的余弦值
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学参加诗词大赛,各答3道题,每人答对每道题的概率均为,且各人是否答对每道题互不影响.
(Ⅰ)用表示甲同学答对题目的个数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“甲比乙答对题目数恰好多2”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆过点,离心率为.分别是椭圆的上、下顶点,是椭圆上异于的一点.
(1)求椭圆的方程;
(2)若点在直线上,且,求的面积;
(3)过点作斜率为的直线分别交椭圆于另一点,交轴于点,且点在线段上(不包括端点),直线与直线交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】截至2019年,由新华社《瞭望东方周刊》与瞭望智库共同主办的"中国最具幸福感城市"调查推选活动已连续成功举办12年,累计推选出60余座幸福城市,全国约9亿多人次参与调查,使"城市幸福感"概念深入人心.为了便于对某城市的"城市幸福感"指数进行研究,现从该市抽取若干人进行调查,绘制成如下不完整的2×2列联表(数据单位:人).
男 | 女 | 总计 | |
非常幸福 | 11 | 15 | |
比较幸福 | 9 | ||
总计 | 30 |
(1)将列联表补充完整,并据此判断是否有90%的把握认为城市幸福感指数与性别有关;
(2)若感觉"非常幸福"记2分,"比较幸福"记1分,从上表男性中随机抽取3人,记3人得分之和为,求的分布列,并根据分布列求的概率
附:,其中.
) | 0. 10 | 0. 05 | 0. 010 | 0.001 |
2.706 | 3.841 | 6. 635 | 10. 828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线与轴轴分别交于两点.
①设直线斜率分别为,证明存在常数使得,并求出的值;
②求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com