精英家教网 > 高中数学 > 题目详情
13.以初速度40m/s垂直向上抛一物体,ts时刻的速度(单位:m/s)为v=40-10t.问多少秒后此物体达到最高?最大高度是多少?

分析 由题意,令v=40-10t=0,求出速度为0时的t值,此时物体达到最高高度,再对速度积分求出路程,即得出答案.

解答 解:设此物体在时刻t运动的路程是s,
由v=40-10t=0得t=4,
∴物体达到最高时t=4,
由题意知,s=∫${\;}_{0}^{4}$vdt═∫${\;}_{0}^{4}$(40-10t)dt=(40t-5t2)|${\;}_{0}^{4}$
=40×4-5×4 2=160-80=80,
故4秒后此物体达到最高,最大高度是80米.

点评 本题主要考查积分的应用,根据条件建立积分关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow a,\;\overrightarrow b,\;\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=({1,\;2})$.
(1)若$|{\overrightarrow c}|=2\sqrt{5}$,且向量$\overrightarrow c$与向量$\overrightarrow a$反向,求$\overrightarrow c$的坐标;
(2)若$|{\overrightarrow b}|=\frac{{\sqrt{5}}}{2}$,且$(\overrightarrow a+2\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=\frac{15}{4}$,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=ax+lnx的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知|z|=1,设u=z2-i+1,则|u|的取值范围[-1$+\sqrt{2}$,1+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{1}{2}{a}_{n}$+$\frac{1}{{2}^{n+1}}$
(1)设bn=2nan,证明:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算$\frac{cot45°+cot30°}{1-cot45°cot30°}$=-2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=2sin(2x+θ+$\frac{π}{3}$)
(1)若0≤θ≤π,求θ,使函数f(x)是偶函数;
(2)在(1)成立的条件下,求满足f(x)=1,其中x∈[-π,π]的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线3x-4y+1=0与x2+2x+y2-4y+2=0的位置关系是(  )
A.相切B.相交C.相离D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(-x,x2)(x∈R且x≠0),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案