精英家教网 > 高中数学 > 题目详情
8.在数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{1}{2}{a}_{n}$+$\frac{1}{{2}^{n+1}}$
(1)设bn=2nan,证明:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn

分析 (1)由题意可得2n+1an+1=2nan+1,即有bn+1=bn+1,由等差数列的定义即可得证;
(2)求得an=n•($\frac{1}{2}$)n,再由数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)证明:a1=$\frac{1}{2}$,an+1=$\frac{1}{2}{a}_{n}$+$\frac{1}{{2}^{n+1}}$,
可得2n+1an+1=2nan+1,
即有bn+1=bn+1,
则数列{bn}是首项为1,公差为1的等差数列;
(2)由(1)可得bn=1+n-1=n,
即2nan=n,即有an=n•($\frac{1}{2}$)n
则前n项和Sn=1•$\frac{1}{2}$+2•$\frac{1}{4}$+3•$\frac{1}{8}$+…+n•($\frac{1}{2}$)n
$\frac{1}{2}$Sn=1•$\frac{1}{4}$+2•$\frac{1}{8}$+3•$\frac{1}{16}$+…+n•($\frac{1}{2}$)n+1
两式相减可得,$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1
化简可得Sn=2-$\frac{n+2}{{2}^{n}}$.

点评 本题考查等差数列的定义和通项公式的运用,考查构造法和数列的求和方法:错位相减法,同时考查等比数列的求和公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设奇函数f(x)在(0,+∞)上为增函数,且$f({\sqrt{3}})=0$,则不等式x[f(x)-f(-x)]<0的解集为(  )
A.$({-\sqrt{3},0})∪({\sqrt{3},+∞})$B.$({-\sqrt{3},0})∪({0,\sqrt{3}})$C.$({-∞,-\sqrt{3}})∪({0,\sqrt{3}})$D.$({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:$\frac{sin7°+cos45°sin38°}{cos7°-sin45°sin38°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知所敖f(x)=ln(ex+a+3)(a为常数)是实数集R上的奇函数.
(1)若关于x的方程$\frac{lnx}{f(x)}$=x2-2ex+m有且只有一个实数根,求m的值;
(2)若函数g(x)=λf(x)+sinx在区间[-1,1]]上是减函数,且g(x)≤λt-1在x∈[-1,1]上恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=cosx-$\frac{1}{2}$cos2x(x∈R)的最大值等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.以初速度40m/s垂直向上抛一物体,ts时刻的速度(单位:m/s)为v=40-10t.问多少秒后此物体达到最高?最大高度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知二次函数y=αx2+bx+c的图象如图所示.则不等式ax2+bx+c<0的解集为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,则|2$\overrightarrow{a}$$-\overrightarrow{b}$|=(  )
A.2B.2$\sqrt{3}$C.0D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=loga(1-$\frac{a}{x}$)在($\frac{1}{2}$,2)上是减函数,求实数a的范围.

查看答案和解析>>

同步练习册答案