精英家教网 > 高中数学 > 题目详情
2.直线3x-4y+1=0与x2+2x+y2-4y+2=0的位置关系是(  )
A.相切B.相交C.相离D.不确定

分析 求出圆心到直线的距离大于半径,可得直线和圆相离.

解答 解:圆x2+2x+y2-4y+2=0,即(x+1)2+(y-2)2=3,表示以(-1,2)为圆心、半径等于$\sqrt{3}$的圆.
由于圆心到直线3x-4y+1=0的距离为$\frac{|-3-8+1|}{\sqrt{9+16}}$=2>$\sqrt{3}$,
故直线和圆相离.
故选:C.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)虚轴上的端点B(0,b),右焦点F,若以B为圆心的圆与C的一条渐近线相切于点P,且$\overrightarrow{BP}$$∥\overrightarrow{PF}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\frac{1+\sqrt{3}}{2}$D.$\frac{1+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.以初速度40m/s垂直向上抛一物体,ts时刻的速度(单位:m/s)为v=40-10t.问多少秒后此物体达到最高?最大高度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lnx-ax2+x有两个零点,则实数a的取值范围是(  )
A.(0,1)B.(-∞,1)C.(-∞,$\frac{1+e}{{e}^{2}}$)D.(0,$\frac{1+e}{{e}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,则|2$\overrightarrow{a}$$-\overrightarrow{b}$|=(  )
A.2B.2$\sqrt{3}$C.0D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知0<α<$\frac{π}{2}$,且sin2α=$\frac{4}{5}$,则sinα+cosα=$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知R上的可导偶函数f(x)满足f(x+2)=f(x-2),又f′(1)=5,则f′(15)的值为(  )
A.5B.-5C.0D.±5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知cos(508°-α)=$\frac{12}{13}$,则cos(212°+α)=$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,AB=5,AC=12,BC=13,P为△ABC平面外一点,PA=PB=PC=7
(1)求P到平面ABC的距离;
(2)求P到AC的距离;
(3)求PA,PB与平面ABC所成的角的大小.

查看答案和解析>>

同步练习册答案