精英家教网 > 高中数学 > 题目详情
13.在△ABC中,角A,B,C所对的边分别为a,b,c,sinA,sinC,sinB成等比数列,且b=2a.
(1)求cosC的值;
(2)若△ABC的面积为2$\sqrt{7}$sinAsinB,求sinA及c的值.

分析 (1)利用 sinA,sinC,sinB成等比数列,且b=2a,可得a,b,c的关系,利用余弦定理求cosC的值;
(2)若△ABC的面积为2$\sqrt{7}$sinAsinB,结合面积公式,即可求sinA及c的值.

解答 解:在△ABC中,∵sinA,sinC,sinB成等比数列,
∴sin2C=sinA•sinB,
∴c2=ab,
∵b=2a,
∴c=$\sqrt{2}$a,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+4{a}^{2}-2{a}^{2}}{2a•2a}$=$\frac{3}{4}$;
(2)由(1)可得,sin2C=$\frac{7}{16}$
∵△ABC的面积为2$\sqrt{7}$sinAsinB,
∴△ABC的面积为2$\sqrt{7}$sin2C=$\frac{7\sqrt{7}}{8}$,
∴$\frac{1}{2}absinC$=$\frac{7\sqrt{7}}{8}$,
∴$\frac{1}{2}•a•2a•\frac{\sqrt{7}}{4}$=$\frac{7\sqrt{7}}{8}$,
∴a=$\frac{\sqrt{14}}{2}$,∴b=$\sqrt{14}$,c=$\frac{\sqrt{28}}{2}$,
∴$\frac{1}{2}•\sqrt{14}•\frac{\sqrt{28}}{2}$sinA=$\frac{7\sqrt{7}}{8}$,
∴sinA=$\frac{\sqrt{14}}{8}$.

点评 本题考查余弦定理、正弦定理的运用,考查三角形面积的计算,考查等比数列的性质,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数y=f(log2x)的定义域为[1,2],那么函数y=f(x)的定义域为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB是圆柱的直径且AB=2,PA是圆柱的母线且PA=2,点C是圆柱底面圆周上的点.
(1)求圆柱的侧面积和体积;
(2)求三棱锥P-ABC体积的最大值;
(3)若AC=1,D是PB的中点,点E在线段PA上,求CE+ED的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知二次函数y=f(x)满足f(x)=f(4-x),且方程f(x)=0有两个实根x1,x2,那么x1+x2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,内角A、B、C所对的边为a、b、c,B=60°,a=4,其面积S=20$\sqrt{3}$,则c=(  )
A.15B.16C.20D.4$\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.己知x,y为实数,代数式$\sqrt{1+(y-2)^{2}}$+$\sqrt{9+(3-x)^{2}}$+$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\sqrt{5}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.两个相关变量满足如表关系:
x23456
y25505664
根据表格已得回归方程:$\stackrel{∧}{y}$=9.4x+9.2,表中有一数据模糊不清,请推算该数据是(  )
A.37B.38.5C.39D.40.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线ln:y=x-$\sqrt{2n}$与圆Cn:x2+y2=2an+n交于不同的两点An,Bn,n∈N*.数列{an}满足:a1=1,an+1=$\frac{1}{4}{|{{A_n}{B_n}}|^2}$.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=$\frac{n}{{4{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设Sn是数列{an}的前n项和,已知a1=2,an+1=Sn+2.
(1)求数列{an}的通项公式.
(2)令bn=(2n-1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案