精英家教网 > 高中数学 > 题目详情
18.己知x,y为实数,代数式$\sqrt{1+(y-2)^{2}}$+$\sqrt{9+(3-x)^{2}}$+$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\sqrt{5}$+3$\sqrt{2}$.

分析 根据$\sqrt{1+(y-2)^{2}}$+$\sqrt{9+(3-x)^{2}}$+$\sqrt{{x}^{2}+{y}^{2}}$的几何意义结合图象求出最小值即可.

解答 解:$\sqrt{1+(y-2)^{2}}$的几何意义表示(0,y),(1,2)的距离,
$\sqrt{9+(3-x)^{2}}$的几何意义表示(x,0),(3,3)的距离,
$\sqrt{{x}^{2}+{y}^{2}}$的几何意义表示(x,y),(0,0)的距离,
如图示:

结合图象x=0,y=0时,
代数式$\sqrt{1+(y-2)^{2}}$+$\sqrt{9+(3-x)^{2}}$+$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\sqrt{5}$+3$\sqrt{2}$,
故答案为:$\sqrt{5}$+3$\sqrt{2}$.

点评 本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若数列{an}的通项公式为an=4•3-n(n∈N*),则这个数列是一个(  )
A.以4为首项,3为公比的等比数列B.以4为首项,$\frac{1}{3}$为公比的等比数列
C.以$\frac{4}{3}$为首项,3为公比的等比数列D.以$\frac{4}{3}$为首项,$\frac{1}{3}$为公比的等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+1,x≥1}\\{(\frac{1}{2})^{x}+\frac{1}{2},x<1}\end{array}\right.$,则f(f(2))=(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:a1=$\frac{1}{4}$,an=$\frac{{{a_{n-1}}}}{{{{({-1})}^n}{a_{n-1}}-2}}$(n≥2,n∈N*),设bn=$\frac{1}{a_n}+{({-1})^n}$.
(1)求证:数列{bn}是等比数列,并求数列{an}的通项公式;
(2)求数列$\left\{{\frac{3n-2}{b_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,sinA,sinC,sinB成等比数列,且b=2a.
(1)求cosC的值;
(2)若△ABC的面积为2$\sqrt{7}$sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某种商品价格与该商品日需求量之间的几组对照数据如表:
价格x(元/kg)1015202530
日需求量y(kg)1110865
(Ⅰ) 求y关于x的线性回归方程;
(Ⅱ) 利用(Ⅰ)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程$\widehaty=bx+a$,其中b=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,a=$\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某单位为了制定节能减排的目标,先调查了用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温(℃)181310-1
用电量(度)24343864
由表中数据,得线性回归方程$\widehaty=-2x+\widehata$,由此估计用电量为72度时气温的度数约为(  )
A.-10B.-8C.-6D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+1,数列{an}满足an=f(n)(n∈N*),数列{bn}的前n项和为Tn,且b1=2,Tn=bn+1-2(n∈N).
(1)分别求{an},{bn}的通项公式;
(2)定义x=[x]+(x),[x]为实数x的整数部分,(x)为小数部分,且0≤(x)<1.记cn=$(\frac{a_n}{b_n})$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“m>n>0”是“曲线mx2+ny2=1为焦点在x轴上的椭圆”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案