精英家教网 > 高中数学 > 题目详情
8.“m>n>0”是“曲线mx2+ny2=1为焦点在x轴上的椭圆”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 由“m>n>0”,知“方程mx2+ny2=1表示焦点在y轴上的椭圆”;由“方程mx2+ny2=1表示焦点在x轴上的椭圆”,知“n>m>0”.所以“m>n>0”是“方程mx2+ny2=1表示焦点在x轴上的椭圆”的既不充分也不必要条件.

解答 解:∵“m>n>0”⇒“方程mx2+ny2=1表示焦点在y轴上的椭圆”,
“方程mx2+ny2=1表示焦点在x轴上的椭圆”⇒“n>m>0”,
∴“m>n>0”是“方程mx2+ny2=1表示焦点在x轴上的椭圆”的既不充分也不必要条件.
故选D.

点评 本题考查必要条件、充分条件与充要条件的判断,解题时要认真审题,注意椭圆的定义和性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.己知x,y为实数,代数式$\sqrt{1+(y-2)^{2}}$+$\sqrt{9+(3-x)^{2}}$+$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\sqrt{5}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线l过点(1,0),且倾斜角为$\frac{5π}{6}$,则直线l的方程为(  )
A.y=-$\frac{{\sqrt{3}}}{3}$x+1B.y=$\frac{{\sqrt{3}}}{3}({x-1})$C.y=-$\frac{{\sqrt{3}}}{3}$x-1D.y=-$\frac{{\sqrt{3}}}{3}({x-1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}满足an+2=an+1-an,其前n项和为Sn,若S2015=2015,则S2016=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设Sn是数列{an}的前n项和,已知a1=2,an+1=Sn+2.
(1)求数列{an}的通项公式.
(2)令bn=(2n-1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.现有A,B两个箱子,A箱装有红球和白球共6,B箱装有红球4个、白球1个、黄球1个.现甲从A箱中任取2个球,乙从B箱中任取1个球.若取出的3个球恰有两球颜色相同,则甲获胜,否则乙获胜.为了保证公平性,A箱中的红球个数应为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知四棱锥P-ABCD,PD⊥底面ABCD,且底面ABCD是边长为2的正方形,M、N分别为PB、PC的中点.
(Ⅰ)证明:MN∥平面PAD;
(Ⅱ)若PA与平面ABCD所成的角为45°,求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知2x+3y-1<0,且x>0,y>0,则z=x-2y的取值范围为(-$\frac{2}{3}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,设△ABC的个内角A、B、C对应的三条边分别为a、b、c,且角A、B、C成等差数列,a=2,线段AC的垂直平分线分别交线段AB、AC于D、E两点.
(1)若△BCD的面积为$\frac{\sqrt{3}}{3}$,求线段CD的长;
(2)若DE=$\frac{\sqrt{6}}{2}$,求角A的值.

查看答案和解析>>

同步练习册答案