精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2x+1,数列{an}满足an=f(n)(n∈N*),数列{bn}的前n项和为Tn,且b1=2,Tn=bn+1-2(n∈N).
(1)分别求{an},{bn}的通项公式;
(2)定义x=[x]+(x),[x]为实数x的整数部分,(x)为小数部分,且0≤(x)<1.记cn=$(\frac{a_n}{b_n})$,求数列{cn}的前n项和Sn

分析 (1)an=f(n)=2n+1.当n≥2时,bn=Tn-Tn-1,可得bn+1=2bn,b1=2≠0,又令n=1,得b2=4,利用等比数列的通项公式即可得出.
(2)由题意,$\frac{a_1}{b_1}=\frac{3}{2},{c_1}=\frac{1}{2}$;$\frac{a_2}{b_2}=\frac{5}{4},{c_2}=\frac{1}{4}$;当n≥3时,可以证明0<2n+1<2n,因此${c_n}=(\frac{2n+1}{2^n})=\frac{2n+1}{2^n}(n≥3)$,再利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)an=f(n)=2n+1.
当n≥2时,bn=Tn-Tn-1=bn+1-bn,bn+1=2bn,b1=2≠0,又令n=1,得b2=4.
∴$\frac{{{b_{n+1}}}}{b_n}=2$,{bn}是以2为首项和公比的等比数列,
${b_n}=2•{2^{n-1}}={2^n}$.
(2)依题意,$\frac{a_1}{b_1}=\frac{3}{2},{c_1}=\frac{1}{2}$;$\frac{a_2}{b_2}=\frac{5}{4},{c_2}=\frac{1}{4}$;
当n≥3时,可以证明0<2n+1<2n,即$0<\frac{2n+1}{2^n}<1$,∴${c_n}=(\frac{2n+1}{2^n})=\frac{2n+1}{2^n}(n≥3)$,
则${S_1}=\frac{1}{2}$,${S_2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$,${S_n}=\frac{1}{2}+\frac{1}{4}+\frac{7}{8}+\frac{9}{16}+…+\frac{2n+1}{2^n}(n≥3)$.
令$W=\frac{7}{8}+\frac{9}{16}+…+\frac{2n+1}{2^n}(n≥3)$,$\frac{1}{2}W=\frac{7}{16}+\frac{9}{32}+…+\frac{2n+1}{{{2^{n+1}}}}(n≥3)$,
两式相减并化简得得$W=\frac{9}{4}-\frac{1}{{{2^{n-2}}}}-\frac{2n+1}{2^n}=\frac{9}{4}-\frac{2n+5}{2^n}(n≥3)$.
∴${S_n}=3-\frac{2n+5}{2^n}(n≥3)$,检验知,n=1不合,n=2适合,
∴${S_n}=\left\{{\begin{array}{l}{\frac{1}{2},n=1}\\{3-\frac{2n+5}{2^n},n≥2}\end{array}}\right.$.

点评 本题考查了递推关系、“错位相减法”、等比数列的通项公式及其前n项和公式、新定义,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年出险次数012345次以上(含5次)
下一年保费倍率85%100%125%150%175%200%
连续两年没出险打7折,连续三年没出险打6折
经验表明新车商业险保费与购车价格有较强的线性关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由着8组数据得到的回归直线方程为:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)广东李先生2016年1月购买一辆价值20万元的新车
      ①估计李先生购车时 的商业车险保费;
      ②若该车今年2月份已出过一次险,现在有被刮花了,李先生到汽车维修4S店询价,预计修车费用为800元,保险专家建议李先生自费(即不出险),你认为李先生是否应该接受建议?说明理由.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.己知x,y为实数,代数式$\sqrt{1+(y-2)^{2}}$+$\sqrt{9+(3-x)^{2}}$+$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\sqrt{5}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正项等比数列{an}满足log2an+2-log2an=2,且a3=8,则数列{an}的前n项和Sn=2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线ln:y=x-$\sqrt{2n}$与圆Cn:x2+y2=2an+n交于不同的两点An,Bn,n∈N*.数列{an}满足:a1=1,an+1=$\frac{1}{4}{|{{A_n}{B_n}}|^2}$.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=$\frac{n}{{4{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点D是△ABC的边BC上一点,且AC=$\sqrt{3}$AD,$\sqrt{3}$CD=2AC,CD=2BD.
(Ⅰ)求B;
(Ⅱ)若△ABD的外接圆的半径为$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线l过点(1,0),且倾斜角为$\frac{5π}{6}$,则直线l的方程为(  )
A.y=-$\frac{{\sqrt{3}}}{3}$x+1B.y=$\frac{{\sqrt{3}}}{3}({x-1})$C.y=-$\frac{{\sqrt{3}}}{3}$x-1D.y=-$\frac{{\sqrt{3}}}{3}({x-1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}满足an+2=an+1-an,其前n项和为Sn,若S2015=2015,则S2016=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知2x+3y-1<0,且x>0,y>0,则z=x-2y的取值范围为(-$\frac{2}{3}$,$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案