精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=ex[lnx+(x-m)2],若对于?x∈(0,+∞),f′(x)-f(x)>0成立,则实数m的取值范围是(  )
A.$({-∞,\sqrt{2}})$B.$({-∞,2\sqrt{2}})$C.$({-\sqrt{2},\sqrt{2}})$D.$({-2\sqrt{2},2\sqrt{2}})$

分析 问题转化为m<$\frac{1}{2x}$+x在x∈(0,+∞)恒成立,根据基本不等式的性质求出$\frac{1}{2x}$+x在x∈(0,+∞)上的最小值,从而求出m的范围即可.

解答 解:∵f′(x)-f(x)=ex[$\frac{1}{x}$+2(x-m)]>0,
∴m<$\frac{1}{2x}$+x在x∈(0,+∞)恒成立,
而$\frac{1}{2x}$+x≥2$\sqrt{\frac{1}{2x}•x}$=$\sqrt{2}$,当且仅当x=$\frac{\sqrt{2}}{2}$时“=”成立,
故m<$\sqrt{2}$,
故选:A.

点评 本题考查了函数恒成立问题,考查导数的应用以及级别不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.对于复数z1=m+i,z2=m+(m-2)i(i为虚数单位,m为实数).
(1)若z2在复平面内对应的点位于第四象限,求m的取值范围;
(2)若z1,z2满足z2=z1•ni,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列等比数列前8项的和
(1)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$…;
(2)a1=27,a9=$\frac{1}{243}$,(q<0);
(3)a1=3,q=2;
(4)a1=-2.7,q=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校组织高一数学模块检测(满分150分),从得分在[90,140]的学生中随机抽取了100名学生的成绩,将它们分成5组,分别为:第1组[90,100),第2组[100,110),第3组[110,120),第4组[120,130),第5组[130,140],然后绘制成频率分布直方图.
(I)求成绩在[120,130)内的频率,并将频率分布直方图补齐;
(Ⅱ)从成绩在[110,120),[120,130),[130,140]这三组的学生中,用分层抽样的方法选取n名学生参加一项活动,已知从成绩在[120,130)内的学生中抽到了6人,求n的值;
(Ⅲ)从成绩在[120,130)内抽到的这6名学生中有4名男生,2名女生,现要从这6名学生中任选2名作为代表发言,求选取的2人恰为1男1女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx-3x+8.
(1)求函数y=f(x)在[e,e3](e是自然对数的底数)的值域;
(2)设0<a<b,求证:$0<2f(a)+f(b)-3f({\frac{2a+b}{3}})<({b-a})ln3$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=1n(x+1)+ax2-x(a∈R).
(1)当$a=\frac{1}{4}$时,求函数y=f(x)的单调区间和极值;
(2)若对任意实数b∈(1,2),当x∈(-1,b]时,函数f(x)的最大值为f(b),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.半径为1的球的表面积为(  )
A.πB.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).
分组组距频数频率
一组0≤t<500
二组5≤t<10100.10
三组10≤t<1510
四组15≤t<200.50
五组20≤t≤25300.30
合计0≤t≤251001.00
解答下列问题:
(1)这次抽样的样本容量是多少?
(2)在表中填写出缺失的数据并补全频率分布直方图;
(3)旅客购票用时的中位数为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某人有5把钥匙,其中只有一把可以打开房门,他随意地进行试开,若试过的钥匙放在一旁,打开门时试过的次数ξ为随机变量,则P(ξ=3)等于(  )
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3!}{5!}$

查看答案和解析>>

同步练习册答案