精英家教网 > 高中数学 > 题目详情
3.求下列等比数列前8项的和
(1)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$…;
(2)a1=27,a9=$\frac{1}{243}$,(q<0);
(3)a1=3,q=2;
(4)a1=-2.7,q=-$\frac{1}{3}$.

分析 分别根据等比数列的前n项和公式计算即可.

解答 解:(1)该数列为以$\frac{1}{2}$为首项,以$\frac{1}{2}$为公比的等比数列,故S8=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{8}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{8}}$=$\frac{255}{256}$
(2)∵a1=27,a9=$\frac{1}{243}$,
∴$\frac{1}{243}$=27•q9-1
∴q=-$\frac{1}{3}$,
∴S8=$\frac{27(1-(-\frac{1}{3})^{8})}{1+\frac{1}{3}}$=$\frac{1640}{81}$;
(3)a1=3,q=2,S8=$\frac{3(1-{2}^{8})}{1-2}$=3•28-3=765,
(4)a1=-2.7,q=-$\frac{1}{3}$,S8=$\frac{-2.7(1-(-\frac{1}{3})^{8})}{1+\frac{1}{3}}$=-$\frac{164}{81}$

点评 本题考查了等比数列的前n项和公式,考查了学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知经过点A(-3,-2)的直线与抛物线C:x2=8y在第二象限相切于点B,记抛物线C的焦点为F,则直线BF的斜率是-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,锐角α的顶点在坐标原点,始边与x轴正半轴重合,终边与单位圆交于点A(x1,y1),将射线OA绕原点按逆时针方向旋转$\frac{π}{3}$后与单位圆交于点B(x2,y2),记函数f(α)=y1+y2
(1)求函数f(α)的值域;
(2)比较f($\frac{1}{2}$)和f($\frac{3}{2}$)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,a2=2,4an+2=4an+1-an(n∈N*),求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设A={x|-2<x<2},B={x|x2-2x-3=0},则A∪B={x|-2<x<2}∪{3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若P⊆U,Q⊆U,且x∈CU(P∩Q),则(  )
A.x∉P且x∉QB.x∉P或x∉QC.x∈CU(P∪Q)D.x∈CUP

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=x2+(sinθ-cosθ)x+sinθ(θ∈R)的图象关于y轴对称,则sin2θ+cos2θ的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=ex[lnx+(x-m)2],若对于?x∈(0,+∞),f′(x)-f(x)>0成立,则实数m的取值范围是(  )
A.$({-∞,\sqrt{2}})$B.$({-∞,2\sqrt{2}})$C.$({-\sqrt{2},\sqrt{2}})$D.$({-2\sqrt{2},2\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,当x=3时的值,并将结果化为8进制数.

查看答案和解析>>

同步练习册答案