精英家教网 > 高中数学 > 题目详情
14.如图,锐角α的顶点在坐标原点,始边与x轴正半轴重合,终边与单位圆交于点A(x1,y1),将射线OA绕原点按逆时针方向旋转$\frac{π}{3}$后与单位圆交于点B(x2,y2),记函数f(α)=y1+y2
(1)求函数f(α)的值域;
(2)比较f($\frac{1}{2}$)和f($\frac{3}{2}$)的大小,并说明理由.

分析 (1)f(α)=y1+y2=sinα+sin(α+$\frac{π}{3}$)=$\sqrt{3}$sin(α+$\frac{π}{6}$),即可求函数f(α)的值域;
(2)确定f(α)在(0,$\frac{π}{3}$]上单调递增,在[$\frac{π}{3}$,$\frac{π}{2}$)上单调递减,且关于直线x=$\frac{π}{3}$对称,f($\frac{3}{2}$)=f($\frac{2π}{3}$-$\frac{3}{2}$),即可比较f($\frac{1}{2}$)和f($\frac{3}{2}$)的大小.

解答 解:(1)f(α)=y1+y2=sinα+sin(α+$\frac{π}{3}$)=$\sqrt{3}$sin(α+$\frac{π}{6}$),
∵α∈(0,$\frac{π}{2}$),
∴α+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{2π}{3}$),
∴f(α)∈($\frac{\sqrt{3}}{2}$,$\sqrt{3}$];
(2)∵α∈(0,$\frac{π}{2}$),
∴f(α)在(0,$\frac{π}{3}$]上单调递增,在[$\frac{π}{3}$,$\frac{π}{2}$)上单调递减,且关于直线x=$\frac{π}{3}$对称,
∴f($\frac{3}{2}$)=f($\frac{2π}{3}$-$\frac{3}{2}$),
∵0<$\frac{1}{2}$<$\frac{2π}{3}$-$\frac{3}{2}$<$\frac{π}{3}$,
∴f($\frac{1}{2}$)<f($\frac{2π}{3}$-$\frac{3}{2}$),
即f($\frac{1}{2}$)<f($\frac{3}{2}$).

点评 本题主要考查任意角的三角函数的定义,正弦函数的定义域和值域、单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.过抛物线y2=2px(p>0)的焦点F的直线l依次交抛物线及其准线于点A、B、C,若|AF|=2,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,则抛物线的方程为(  )
A.y2=xB.y2=2xC.y2=4xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线C的方程为F(x,y)=0,集合T={(x,y)|F(x,y)=0},若对于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,则称曲线C为$\sum_{\;}^{\;}$曲线,下列方程所表示的曲线中,是$\sum_{\;}^{\;}$曲线的有①③⑤(写出所有$\sum_{\;}^{\;}$曲线的序号)
①2x2+y2=1;②x2-y2=1;③y2=2x;④|x|-|y|=1;⑤(2x-y+1)(|x-1|+|y-2|)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.对于复数z1=m+i,z2=m+(m-2)i(i为虚数单位,m为实数).
(1)若z2在复平面内对应的点位于第四象限,求m的取值范围;
(2)若z1,z2满足z2=z1•ni,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(2x-$\frac{π}{6}$)的图象C1向左平移$\frac{π}{4}$个单位得图象C2,则C2对应的函数g(x)的解析式为y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知长方体ABCD-A1B1C1D1的体积为V,点M、N分别为AB、BB1中点,三棱锥M-DB1N的体积为V1,则$\frac{V1}{V}$=(  )
A.$\frac{1}{36}$B.$\frac{1}{24}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的重心为O,且AB=5,BC=2$\sqrt{3}$,AC=3,则$\overrightarrow{AO}$•$\overrightarrow{BC}$=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列等比数列前8项的和
(1)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$…;
(2)a1=27,a9=$\frac{1}{243}$,(q<0);
(3)a1=3,q=2;
(4)a1=-2.7,q=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.半径为1的球的表面积为(  )
A.πB.$\frac{4}{3}π$C.D.

查看答案和解析>>

同步练习册答案