分析 (I)根据勾股定理得出DE⊥CD,又PC⊥平面ABC得出PC⊥DE,故DE⊥平面PCD;
(II)作DF⊥BC,垂足为F,根据平行线的性质得出比例式计算AC,再代入体积公式计算三棱锥P-ABC的体积.
解答
证明:(I)∵PC⊥平面ABC,DE?平面ABC,
∴PC⊥DE,
∵CD=DE=$\sqrt{2}$,CE=2,
∴CD2+DE2=CE2,∴CD⊥DE,
又PC?平面PCD,CD?平面PCD,PC∩CD=C,
∴DE⊥平面PCD.
解:(II)作DF⊥BC,垂足为F,则DF=$\frac{1}{2}$CE=1,
∵∠ACB=$\frac{π}{2}$,∴DF∥AC,
∴$\frac{DF}{AC}=\frac{BF}{BC}$=$\frac{2}{3}$,∴AC=$\frac{3}{2}$.
∴VP-ABC=$\frac{1}{3}{S}_{△ABC}•PC$=$\frac{1}{3}×\frac{1}{2}×3×\frac{3}{2}×3$=$\frac{9}{4}$.
点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$+1 | B. | 4$\sqrt{2}$ | C. | 3+2$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{6}$ | B. | $\sqrt{6}$ | C. | $\frac{{\sqrt{7}}}{7}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com