精英家教网 > 高中数学 > 题目详情
6.如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$,D,E分别为线段AB,BC上的点,CD=DE=$\sqrt{2}$,CE=2EB=2,
(Ⅰ)证明:DE⊥平面PCD;
(Ⅱ)求三棱锥P-ABC的体积.

分析 (I)根据勾股定理得出DE⊥CD,又PC⊥平面ABC得出PC⊥DE,故DE⊥平面PCD;
(II)作DF⊥BC,垂足为F,根据平行线的性质得出比例式计算AC,再代入体积公式计算三棱锥P-ABC的体积.

解答 证明:(I)∵PC⊥平面ABC,DE?平面ABC,
∴PC⊥DE,
∵CD=DE=$\sqrt{2}$,CE=2,
∴CD2+DE2=CE2,∴CD⊥DE,
又PC?平面PCD,CD?平面PCD,PC∩CD=C,
∴DE⊥平面PCD.
解:(II)作DF⊥BC,垂足为F,则DF=$\frac{1}{2}$CE=1,
∵∠ACB=$\frac{π}{2}$,∴DF∥AC,
∴$\frac{DF}{AC}=\frac{BF}{BC}$=$\frac{2}{3}$,∴AC=$\frac{3}{2}$.
∴VP-ABC=$\frac{1}{3}{S}_{△ABC}•PC$=$\frac{1}{3}×\frac{1}{2}×3×\frac{3}{2}×3$=$\frac{9}{4}$.

点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数y=$\frac{k}{x-2}$,(k>0)在[4,6]上的最大值为1,则k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线ax+by-1=0(a>0,b>0)过圆x2+y2-2x-2y=0的圆心,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.$\sqrt{2}$+1B.4$\sqrt{2}$C.3+2$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,若PA=AB=2,AC=BC,则二面角P-AC-B大小的正切值是(  )
A.$\frac{{\sqrt{6}}}{6}$B.$\sqrt{6}$C.$\frac{{\sqrt{7}}}{7}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设等比数列{an}的公比q=2,前n项和为Sn,则$\frac{{S}_{4}}{{a}_{1}}$=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若a=3$\sqrt{3}$,c=5,B=30°,则b=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=4x,F是抛物线C的焦点,过F点的直线l与抛物线C相交于A、B两点,记O为坐标原点.
(Ⅰ)求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ)设$\overrightarrow{AF}=λ\overrightarrow{FB}$,当△OAB的面积${S_{△OAB}}=\frac{5}{2}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆E过圆x2+y2+2x-4y-3=0与直线y=x的交点,且圆上任意一点关于直线y=2x-2的对称点仍在圆上.
(1)求圆E的标准方程;
(2)若圆E与y轴正半轴的交点为A,直线l与圆E交于B,C两点,且点H($\sqrt{3}$,0)是△ABC的垂线(垂心是三角形三条高线的交点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α、β都是锐角,且$cos(α+β)=-\frac{3}{5}$,$sinβ=\frac{12}{13}$,则cosα=$\frac{33}{65}$.

查看答案和解析>>

同步练习册答案