精英家教网 > 高中数学 > 题目详情
17.如图,设AB为圆锥PO的底面直径,PA为母线,点C在底面圆周上,若PA=AB=2,AC=BC,则二面角P-AC-B大小的正切值是(  )
A.$\frac{{\sqrt{6}}}{6}$B.$\sqrt{6}$C.$\frac{{\sqrt{7}}}{7}$D.$\sqrt{7}$

分析 取AC的中点D,连接OD,PD,则OD⊥AC,PD⊥AC,可得∠PDO是二面角P-AC-B的平面角,求出PO,OD,即可求出二面角P-AC-B大小的正切值.

解答 解:取AC的中点D,连接OD,PD,则OD⊥AC,PD⊥AC,
∴∠PDO是二面角P-AC-B的平面角.
∵PA=AB=2,AC=BC,
∴PO=$\sqrt{3}$,OD=$\frac{\sqrt{2}}{2}$,
∴二面角P-AC-B大小的正切值是$\frac{PO}{OD}$=$\sqrt{6}$,
故选:B.

点评 本题考查二面角P-AC-B大小的正切值,考查学生的计算能力,正确作出二面角P-AC-B的平面角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某种产品的广告费支出x与销售额y(单位:百万元)之间有如表对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求线性回归方程;
(3)预测当广告费支出7(百万元)时的销售额.
参考公式:用最小二乘法求线性回归方程,其中系数$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{{\sqrt{1-{x^2}}}}{{2-\left|{x+2}\right|}}$是奇函数(“奇”,“偶”,“非奇非偶”中选一合适的填空).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={3,4,5,6},B={a},若A∩B={6},则a=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$,$\overrightarrow b$,则“$\overrightarrow a$∥$\overrightarrow b$”是“|$\overrightarrow a$-$\overrightarrow b$|=|$\overrightarrow a$|-|$\overrightarrow b$|”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C=$\sqrt{3}$cosC,其中C为锐角.
(1)求角C的大小;
(2)a=1,b=4,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$,D,E分别为线段AB,BC上的点,CD=DE=$\sqrt{2}$,CE=2EB=2,
(Ⅰ)证明:DE⊥平面PCD;
(Ⅱ)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$\frac{2a+i}{1+i}$是纯虚数,则实数a=(  )
A.-1B.$\frac{1}{2}$C.lD.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-eax(a>0)(e是自然对数的底数),
(1)求函数y=f(x)的极值;
(2)若存在x1,x2(x1<x2),使得f(x1)=f(x2)=0,证明:$\frac{x_1}{x_2}<ae$.

查看答案和解析>>

同步练习册答案