精英家教网 > 高中数学 > 题目详情
20.如图是某几何体的三视图,则该几何体体积是(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

分析 由三视图可知:该几何体为三棱柱截去一个小三棱锥.

解答 解:由三视图可知:该几何体为三棱柱截去一个小三棱锥.
∴该几何体体积V=$\frac{\sqrt{3}}{4}×{2}^{2}$×2-$\frac{1}{3}×\frac{\sqrt{3}}{4}$×22×1=$\frac{5\sqrt{3}}{3}$.
故选:B.

点评 本题考查了三视图的有关计算、长方体的体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.A、B、C、D为半径是2的球的球面上四点,已知|AB|=|AC|=1,∠BAC=120°,则四面体ABCD的体积的最大值为$\frac{3+2\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.20+2πB.20+6πC.14+2πD.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),(ai,bi∈R+,i=1,2,3,…,n),记f0(y)=0(y≥0),fk(y)=$\underset{max}{{x}_{k}=0,1,2,3,…,m}${bkxk+fk-1(y-akxk)}(y≥0,1≤k≤n),其中m为不超过$\frac{y}{a_k}$的最大整数.(注:$\underset{max}{{x}_{k}=0,1,2,3,…,m}${bkxk+fk-1(y-akxk)}表示当xk取0,1,2,3,…,m时,bkxk+fk-1(y-akxk)中的最大数)
已知数对序列P:(2,3),(3,4),(3,p),回答下列问题:
(Ⅰ)写出f1(7)的值;
(Ⅱ)求f2(7)的值,以及此时的x1,x2的值;
(Ⅲ)求得f3(11)的值时,得到x1=4,x2=0,x3=1,试写出p的取值范围.(只需写出结论,不用说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,是一个几何体的三视图,其中正视图是等腰直角三角形,侧视图与俯视图均为边长为1的正方形,则该几何体外接球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A.$\frac{20}{3}$cm3B.$\frac{22}{3}$cm3C.4cm3D.6cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的表面积等于(  )
A.7+$\sqrt{2}$B.6+$\sqrt{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+ax(a∈R),g(x)=lnx.
(1)求证:g(x)<$\frac{x}{2}$;
(2)设h(x)=f(x)+bg(x)(b∈R).
①若a2+b=0,且当x>0时h(x)>0恒成立,求a的取值范围;
②若h(x)在(0,+∞)上存在零点,且a+b≥-2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,并且$\overrightarrow{a}$=(3,x),$\overrightarrow{b}$=(7,12),则x=(  )
A.-$\frac{7}{4}$B.$\frac{7}{4}$C.-$\frac{7}{3}$D.$\frac{7}{3}$

查看答案和解析>>

同步练习册答案