精英家教网 > 高中数学 > 题目详情
17.若不等式ax2+bx-2>0的解集为(-4,1),则a+b等于2.

分析 根据一元二次不等式与对应方程的关系,利用根与系数的关系求出a、b的值,即可求出a+b.

解答 解:∵不等式ax2+bx-2>0的解集为(-4,1),
∴-4和1是ax2+bx-2=0的两个根,
即$\left\{\begin{array}{l}{-4+1=-\frac{b}{a}}\\{-4×1=\frac{-2}{a}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$;
∴a+b=$\frac{1}{2}$+$\frac{3}{2}$=2.
故答案为:2.

点评 本题考查了一元二次不等式的解集与所对应一元二次方程根的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知样本x1,x2,…xm的平均数为$\overline x$,样本y1,y2,…yn的平均数$\overline y$,若样本x1,x2,…xm,y1,y2,…yn的平均数$\overline z$=α$\overline x$+(1-α)$\overline y$,其中0<α≤$\frac{1}{2}$,则m,n的大小关系为(  )
A.m<nB.m>nC.m≤nD.m≥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(π)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若方程(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦点在y轴上的椭圆,则实数m的取值范围是(  )
A.(-∞,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知m>0,n>0,且mn=81,则m+n的最小值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(1)求f(x)的单调区间.
(2)若关于x的方程2f(x)-m+1=0在区间[-$\frac{π}{3}$,$\frac{π}{4}$]上有两个相异的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某运动员射击一次所得环数X的分布如下:
X0~678910
P00.20.30.30.2
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.
(I)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin4θ+cos4θ=1,则sinθ-cosθ=±1.

查看答案和解析>>

同步练习册答案