精英家教网 > 高中数学 > 题目详情
3.表中给出的是某港口在某季节每天几个时刻的水深关系.
 时刻 0:003:00  6:009:00  12:0015:00  18:0021:00  24:00
 水深(m)5.0  7.05.0  3.05.0  7.05.0  3.05.0 
若该港口的水深y(m)和时刻t(0≤t≤24)的关系可用函数y=Asin(ωt)+h(其中A>0,ω>0,h>0)来近似描述,则该港口在11:00的水深为(  )
A.4mB.5mC.6mD.7m

分析 根据表格确定函数的最大值和最小值以及周期,求出A,h,ω的值,进行求解即可.

解答 解:由表格知函数的最大值是7,最小值是3,则满足$\left\{\begin{array}{l}{A+h=7}\\{-A+h=3}\end{array}\right.$,
得A=2,h=5,
相邻两个最大值之间的距离T=15-3=12,即$\frac{2π}{ω}$=12,则ω=$\frac{π}{6}$,
此时y=2sin($\frac{π}{6}$t)+5,
当t=11时,y=2sin($\frac{π}{6}$×11)+5=2sin(2π-$\frac{π}{6}$)+5=-2sin$\frac{π}{6}$+5=-2×$\frac{1}{2}$+5=4,
故选:A

点评 本题主要考查三角函数的应用问题,根据条件求出A,h,ω的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设点P(x,y)在不等式组$\left\{\begin{array}{l}{x+2y≤4}\\{x≤2}\\{x+y≥2}\end{array}\right.$表示的平面区域内(含边界),则x2+y2的最小值为(  )
A.8B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的方程x2-ax-3a=0的一个根是-2,求它的另一个根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知三棱锥D-ABC的底面ABC为等边三角形,AB=CD=2,AD=BD=$\sqrt{2}$.
(Ⅰ)求证:平面ABC⊥平面ABD;
(Ⅱ)试求二面角A-CD-B的余弦值;
(Ⅲ)在CD上存在一点E,使二面角D-AB-E的大小为$\frac{π}{3}$,求$\frac{DE}{EC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个棱长为1的正方体被一个平面截去一部分后,剩余部分的三视图如图,则剩余部分的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,BA⊥CA,∠ACB=60°,AC=1,AA1=$\frac{\sqrt{3}}{2}$,点D,D1分别是BC,B1C1的中点.
(1)求证:DC1∥平面ABD1
(2)求二面角D1-AB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若 f(x)=e,则$\lim_{△x→0}\frac{{f({e+△x})-f(e)}}{△x}$=(  )
A.eB.lneC.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,已知$\sqrt{3}$tanAtanB-tanA-tanB=$\sqrt{3}$.
(1)求∠C的大小;
(2)设角A,B,C的对边依次为a,b,c,若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若f (x)=$\frac{e^x}{x}$,1<a<b,则(  )
A.f (a)>f (b)B.f (a)=f (b)C.f (a)<f (b)D.f (a)f (b)<1

查看答案和解析>>

同步练习册答案