精英家教网 > 高中数学 > 题目详情
5.若对数ln(x2-5x+6)存在,则x的取值范围为(-∞,2)∪(3,+∞).

分析 由已知利用对数的概念可得x2-5x+6>0,解不等式即可得解.

解答 解:∵对数ln(x2-5x+6)存在,
∴x2-5x+6>0,
∴解得:3<x或x<2,即x的取值范围为:(-∞,2)∪(3,+∞).
故答案为:(-∞,2)∪(3,+∞).

点评 本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?(结果用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-3,x≤0}\\{-2+lnx,x>0}\end{array}\right.$的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,则f(0)+f(-3)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解方程组$\left\{\begin{array}{l}{(x+y)^{2}=4}\\{(x-y)^{2}=16}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知m∈R,且(m+mi)6=-64i,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知矩阵$A[{\begin{array}{l}1&0\\ 0&2\end{array}}],B=[{\begin{array}{l}1&{\frac{1}{2}}\\ 0&1\end{array}}]$,则AB的逆矩阵(AB)-1=$[\begin{array}{l}{1}&{-1}\\{0}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$,$\overrightarrow{b}$为两个非零向量,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,($\overrightarrow{a}$+$\overrightarrow{b}$)$⊥\overrightarrow{b}$.
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角
(Ⅱ)求|3$\overrightarrow{a}$$-2\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的离心率为$\frac{1}{2}$,则直线y=6x与C的其中一个交点到y轴的距离为$\frac{2}{7}$.

查看答案和解析>>

同步练习册答案