精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的中,a2=2,a2n=an+1,a2n+1=n-an,则{an}的前100项和为1287.

分析 由已知得a1=1,a2n+1+a2n=n+1,由此能求出{an}的前100项和.

解答 解:∵a2n=an+1,a2n+1=n-an
∴a2=a1+1=2,解得a1=1,
∴an=a2n-1,an=n-a2n+1,∴a2n+1+a2n=n+1,
∴a1+(a2+a3)+(a4+a5)+…+(a98+a99)=1+2+3+…+50=1275,
a100=a50+1=a25+2=12-a12+2=14-a6-1=13-a3-1=12-1+a1=12,
∴{an}的前100项和S100=1275+12=1287.
故答案为:1287.

点评 本题考查数列的前100项和的求法,是基础题,解题时要认真审题,注意数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若复数Z1=2-i,Z2=1-3i,则复数$\frac{i}{Z_1}+\frac{Z_2}{5}$的虚部等于$-\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆O中,弦AB满足|AB|=2,则$\overrightarrow{AB}$•$\overrightarrow{AO}$=(  )
A.2B.1C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,|$\overrightarrow{CA}$|=6,|$\overrightarrow{CB}$|=3,M为线段AB上的一点,且|$\overrightarrow{CM}$|=x•$\overrightarrow{CA}$+y•$\overrightarrow{CB}$,$\overrightarrow{BM}$=2$\overrightarrow{MA}$.
(1)求x,y的值.
(2)若$\overrightarrow{CM}$•$\overrightarrow{AB}$=-18,求$\overrightarrow{CA}$与$\overrightarrow{CB}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=log2(x+2).
(1)求f(x)≤2的x的取值范围;
(2)记G(x)=log2(x+2)-$\frac{2}{x}$,直接写出该函数在区间[2,3]上的单调性情况;
(3)若对于区间[2,3]上的每一个x的值,不等式f(x)>$\frac{2}{x}$+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数y=2sin(x+θ)的图象向右平移$\frac{π}{6}$个单位,再向上平移2个单位后,它的一条对称轴是$x=\frac{π}{4}$,则θ的一个可能的值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a=0.30.3,b=0.33,c=log0.33,则a,b,c的大小顺序是(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列是映射的是(  )
A.(1)(2)(3)B.(1)(2)(5)C.(1)(3)(5)D.(1)(2)(3)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式|$\frac{2-x}{3}$|>1的解集是(  )
A.(-∞,-5)∪(-1,+∞)B.(-∞,-5)∪(1,+∞)C.(-∞,-1)∪(5,+∞)D.(-∞,1)∪(5,+∞)

查看答案和解析>>

同步练习册答案