精英家教网 > 高中数学 > 题目详情
1.已知A,B,C三点共线,且A(1,0),B(2,a),C(a,2),则实数a的值是2或-1.

分析 利用向量坐标的求法求出两个向量的坐标;利用向量共线的坐标形式的充要条件列出方程,求出a.

解答 解:∵A(1,0),B(2,a),C(a,2),
∴$\overrightarrow{AB}$=(1,a),$\overrightarrow{AC}$=(a-1,2)
∵A(1,0),B(2,a),C(a,2)三点共线
∴a(a-1)=2
∴a=2,或a=-1,
故答案为:2或-1.

点评 本题考查三点共线的应用,向量坐标的求法、考查向量共线的坐标形式的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+7x2+8x+1,当x=4时,需要做乘法和加法的次数分别是(  )
A.6,6B.5,6C.5,5D.6,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=2cos({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的最小正周期为π,直线$x=-\frac{π}{24}$为它的图象的一条对称轴.
(1)当$x∈[{-\frac{5π}{24},\frac{5π}{24}}]$时,求函数f(x)的值域;
(2)在△ABC中,a,b,c分别为角A,B,C的对应边,若$f({-\frac{A}{2}})=\sqrt{2},a=3$,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知菱形ABCD边长为2.∠BAD=$\frac{π}{3}$.将△ABD沿BD折起.折成二面角A1-BD-C.则下列说法正确的是(  )
A.当二面角A1-BD-C为直二面角时.A1B与CD所成角为$\frac{π}{3}$
B.当二面角A1-BD-C为$\frac{π}{3}$.A1B与平面BCD所成角的正弦值为$\frac{3}{4}$
C.当V${\;}_{{A}_{1}-BCD}$=$\frac{\sqrt{3}}{2}$时,二面角A1-BD-C为$\frac{π}{3}$
D.当二面角A1-BD-C为直二面角时.平面A1BC⊥A1DC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上任意两点P,Q,若OP⊥OQ,则乘积|OP|•|OQ|的最小值为$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中xOy,点P到两点(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距离之和等于4,设点P的轨迹为C
(1)写出C的方程
(2)设直线y=kx+1与C交于A、B两点,k为何值时以AB为直径的圆过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个空间几何体的三视图(单位:cm)如图所示,则侧视图的面积为1cm2,该几何体的体积为$\frac{π}{6}$+$\frac{1}{3}$cm3cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在边长为1的正方体ABCD-A1B1C1D1中.
(1)求∠CAB1的度数;
(2)求二面角B-AC-B1的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出如下四个命题,其中正确的命题的个数是
①若“p或q”为假命题,则p、q均为假命题;
②命题“若x≥4且y≥2,则x+y≥6”的否命题为“若x<4且y<2,则x+y<6”;
③在△ABC中,“A>30°”是“$sinA>\frac{1}{2}$”的充要条件;
④命题“?x0∈R,e${\;}^{{x}_{0}}$≤0”是真命题.(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案