如图,ABCD是块矩形硬纸板,其中AB=2AD,AD=,E为DC的中点,将它沿AE折成直二面角D-AE-B.
(1)求证:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.
(1)见解析(2)
【解析】(1)由题设可知AD⊥DE,取AE中点O,连接OD,BE.∵AD=DE=,∴OD⊥AE.又二面角D-AE-B为直二面角,∴OD⊥平面ABCE.又AE=BE=2,AB=2,∴AB2=AE2+BE2.∴AE⊥BE.取AB中点F,连接OF,则OF∥EB.∴OF⊥AE.以点O为原点,OA,OF,OD分别为x,y,z轴建立空间直角坐标系(如图),
则A(1,0,0),D(0,0,1),B(-1,2,0),E(-1,0,0),=(-1,0,1),=(1,-2,1),=(0,2,0),
设n=(x1,y1,z1)是平面BDE的法向量,
则即取x1=1,则z1=-1.
于是n=(1,0,-1).∴n=-.∴n∥.∴AD⊥平面BDE.
(2)设m=(x2,y2,z2)是平面ABD的一个法向量,
则m·=0,m·=0,∴取x2=1,则y2=1,z2=1,则m=(1,1,1),平面ADE的法向量=(0,1,0).∴cos〈m,〉===.∴二面角B-AD-E的余弦值为.
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练14练习卷(解析版) 题型:填空题
设圆x2+y2=2的切线l与x轴的正半轴、y轴的正半轴分别交于点A,B,当|AB|取最小值时,切线l的方程为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练训练10练习卷(解析版) 题型:解答题
已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷5练习卷(解析版) 题型:填空题
设圆x2+y2=2的切线l与x轴正半轴、y轴正半轴分别交于点A,B,当|AB|取最小值时,切线l的方程为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷5练习卷(解析版) 题型:选择题
已知圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( ).
A. =1 B.=1 C.=1 D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷4练习卷(解析版) 题型:选择题
已知正方体ABCD-A1B1C1D1,M为棱A1B1的中点,N为棱A1D1的中点.如图是该正方体被M,N,A所确定的平面和N,D,C1所确定的平面截去两个角后所得的几何体,则这个几何体的正视图为( ).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练优化重组卷3练习卷(解析版) 题型:选择题
公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=( ).
A.1 B.2 C.4 D.8
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题提升训练x4-1练习卷(解析版) 题型:填空题
如图,⊙O的割线PBA过圆心O,弦CD交PA于点F,且△COF∽△PDF,若PB=OA=2,则PF=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com