精英家教网 > 高中数学 > 题目详情
2.若直线l1:(2m+1)x-4y+3m=0与直线l2:x+(m+5)y-3m=0平行,则m的值为(  )
A.$-\frac{9}{2}或-1$B.$-\frac{9}{2}$C.$-\frac{19}{2}$D.-1

分析 直线l1的斜率一定存在,所以,当两直线平行时,l2的斜率存在,求出l2的斜率,利用它们的斜率相等解出m的值.

解答 解:直线l1的斜率一定存在,为 $\frac{2m+1}{4}$,但当m=-5时,l2的斜率不存在,两直线不平行.
当m≠-5时,l2的斜率存在且等于$\frac{2m+1}{-4}$=$\frac{1}{m+5}$≠$\frac{3m}{-3m}$=-1,
解得m=-$\frac{9}{2}$,
故选:B.

点评 本题考查两直线平行的条件,两直线平行时,它们的斜率相等或者都不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=ax2+bx+c,且满足f(-1)=f(4)=0,f(0)=-4.
(1)求f(x)的解析式;
(2)解不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且对x∈R,恒有f(x-3)≤f(x),则实数a的取值范围为[-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在直三棱柱ABC-A1B1C1中,BC⊥AC,AC=12,BC=5,若一个球和它的各个面都相切,则该三棱柱的表面积为(  )
A.60B.180C.240D.360

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且对任意正整数n都有an=(-1)nSn+pn(p为常数,p≠0).
(1)求p的值;
(2)求数列{an}的通项公式;
(3)设集合An={a2n-1,a2n},且bn,cn∈An,记数列{nbn},{ncn}的前n项和分别为Pn,Qn,若b1≠c1,求证:对任意n∈N,Pn≠Qn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\frac{1}{cosα}$和tanα是方程x2+3x+m=0的两根,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于任意x,[x]表示不超过x的最大整数,如[1.1]=1,[-2.1]=-3.定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},则A中所有元素的和为58.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四边形ABCD中,AB=BD=$\sqrt{2}$,AC=$\sqrt{6}$,AD=2,∠ABC=120°.
(1)求∠BAC的值;
(2)求△ACD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinα-sinβ=-$\frac{1}{3}$,cosα-cosβ=$\frac{1}{2}$,求cos(α-β)和sin(α+β).

查看答案和解析>>

同步练习册答案