精英家教网 > 高中数学 > 题目详情
4.已知p:?x∈[$\frac{1}{4}$,$\frac{1}{2}$],2x<m(x2+1),q:函数f(x)=4x+2x+1+m-1存在零点,若“p且q”为真命题,则实数m的取值范围是($\frac{4}{5}$,1).

分析 分别求出p,q为真时的m的范围,取交集即可.

解答 解:已知p:?x∈[$\frac{1}{4}$,$\frac{1}{2}$],2x<m(x2+1),
故m>$\frac{2x}{{x}^{2}+1}$,
令g(x)=$\frac{2x}{{x}^{2}+1}$,则g(x)在[$\frac{1}{4}$,$\frac{1}{2}$]递增,
故g(x)≤g($\frac{1}{2}$)=$\frac{4}{5}$,
故p为真时:m>$\frac{4}{5}$;
q:函数f(x)=4x+2x+1+m-1=(2x+1)2+m-2,
令f(x)=0,得2x=$\sqrt{2-m}$-1,
若f(x)存在零点,
则$\sqrt{2-m}$-1>0,解得:m<1,
故q为真时,m<1;若“p且q”为真命题,
则实数m的取值范围是:($\frac{4}{5}$,1),
故答案为:($\frac{4}{5}$,1).

点评 本题考查了复合命题的判断,考查函数恒成立问题以及指数函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数y=$\frac{{e}^{x}+{e}^{-x}}{{e}^{x}-{e}^{-x}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G为PC的中点,PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F,M分别为BC,EG上一点,且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)求直线CE与平面AFG所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动点M到定点F(1,0)和定直线x=4的距离之比为$\frac{1}{2}$,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F作斜率不为0的任意一条直线与曲线C交于两点A,B,试问在x轴上是否存在一点P(与点F不重合),使得∠APF=∠BPF,若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=cos50°cos127°+cos40°cos37°,b=$\frac{\sqrt{2}}{2}$(sin56°-cos56°),c=$\frac{1-ta{n}^{2}39°}{1+ta{n}^{2}39°}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(5,m),$\overrightarrow{b}$=(2,-2)且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则m=(  )
A.-9B.9C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正项数列{an} 中,$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=$\frac{n(n+1)}{2}$(n∈N*),则数列{an}的通项公式为(  )
A.an=nB.an=n2C.an=$\frac{n}{2}$D.an=$\frac{{n}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆C的方程为x2+y2=1,直线l的方程为x+y=2,过圆C上任意一点P作与l夹角为45°的直线交l于A,则|PA|的最小值为(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.自贡某工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示(如图).已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元
(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案