精英家教网 > 高中数学 > 题目详情
12.已知动点M到定点F(1,0)和定直线x=4的距离之比为$\frac{1}{2}$,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F作斜率不为0的任意一条直线与曲线C交于两点A,B,试问在x轴上是否存在一点P(与点F不重合),使得∠APF=∠BPF,若存在,求出P点坐标;若不存在,说明理由.

分析 (1)设点M(x,y),利用条件可得等式$\sqrt{(x-1)^{2}+{y}^{2}}$=$\frac{1}{2}$|x-4|,化简,可得曲线C的轨迹方程;
(2)通过设存在点P(x0,0)满足题设条件,分AB与x轴不垂直与不垂直两种情况讨论,利用韦达定理化简、计算即得结论.

解答 解:(1)设点M(x,y),则据题意有$\sqrt{(x-1)^{2}+{y}^{2}}$=$\frac{1}{2}$|x-4|
则4[(x-1)2+y2]=(x-4)2,即3x2+4y2=12,∴$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
曲线C的方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)假设存在点P(x0,0)满足题设条件,
①当AB与x轴不垂直时,设AB的方程为y=k(x-1).
当AB与x轴不垂直时,设AB所在直线的方程为y=k(x-1),
代入椭圆方程化简得:(4k2+3)x2-8k2x+4k2-12=0,
可知△>0,设A(x1,y1),B(x2,y2),
则x1+x2=$\frac{8{k}^{2}}{4{k}^{2}+3}$,x1x2=$\frac{4{k}^{2}-12}{4{k}^{2}+3}$,
若∠APF=∠BPF,则kAP+kBP=0,
则kAP+kBP=$\frac{{y}_{1}}{{x}_{1}-{x}_{0}}+\frac{{y}_{2}}{{x}_{2}-{x}_{0}}$=$\frac{k({x}_{1}-1)({x}_{2}-{x}_{0})+k({x}_{2}-1)({x}_{1}-{x}_{0})}{({x}_{1}-{x}_{0})({x}_{2}-{x}_{0})}$
∵(x1-1)(x2-x0)+(x2-1)(x1-x0)=2x1x2-(1+x0)(x1+x2)+2x0=0
∴整理得:k(x0-4)=0,因为k∈R,所以x0=4;
②当AB⊥x轴时,由椭圆的对称性可知恒有∠APF=∠BPF,满足题意;
综上,在x轴上存在点P(4,0),使得∠APF=∠BPF.

点评 本题考查椭圆的简单性质,圆锥曲线中的存在性问题,转化思想是解题关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+mx,x≤0}\\{-{x}^{2}+2x,x>0}\end{array}\right.$是奇函数,且函数f(x)在区间[-1,2a-3]上单调递增,则实数a的取值范围为(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,f(1))处的切线方程是2x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.3世纪中期,魏晋时期的数学家刘徽首创“割圆术”,也就是在圆内割正多边形,求的近似值,刘徽容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失唉,当圆内接正多边形的边数无限增加时,多边形面积可无限近圆的面积,利用“割圆术”刘徽得到圆周率精确到小数点后两位的计算值3.14,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的n值为(参考数据:sin15°=0.259)(  )
A.6B.12C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若过点A(1,0),且与y轴的夹角为$\frac{π}{6}$的直线与抛物线y2=4x交于P、Q两点,则|PQ|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数h(x)=lnx+$\frac{1}{x}$.
(1)函数g(x)=h(2x+m),若x=1是g(x)的极值点,求m的值并讨论g(x)的单调性;
(2)函数φ(x)=h(x)-$\frac{1}{x}$+ax2-2x有两个不同的极值点,其极小值为M,试比较2M与-3的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知p:?x∈[$\frac{1}{4}$,$\frac{1}{2}$],2x<m(x2+1),q:函数f(x)=4x+2x+1+m-1存在零点,若“p且q”为真命题,则实数m的取值范围是($\frac{4}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中学数学老师分别用两种不同教学方式对入学数学平均分和优秀率都相同的甲、乙两个高一新班(人数均为20人)进行教学(两班的学生学习)(两班的学生学习数学勤奋程度和自觉性都一样).如图所示茎叶图如.

(1)现从乙班数学成绩不低于80分的同学中随机抽取两名同学,求至少有一名成绩为90分的同学被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2表,并判断有多大把握认为“成绩优秀与教学方式有关”.
甲班乙班合计
优秀14822
不优秀61218
合计202040
附参考公式及数据:
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.7910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x-alnx+b,a,b为实数.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;
(Ⅱ)若|f′(x)|<$\frac{3}{{x}^{2}}$对x∈[2,3]恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案